Nets2010 (1131259), страница 16
Текст из файла (страница 16)
Длина кадра у базового интерфейса равна 48 разрядам: по 16 разрядов на каждый В-канал и 4 бита для D-канала. Остальные 12 разрядов носят служебный характер. Кадр основного интерфейса на скорости 1,544Мбит/с имеет длину 193 бита и занимает 125 мкс; на скорости 2,048 Мбит/с имеет длину 256 бит и занимает те же 125 мкс.
Интефейс BRI может поддерживать не только схему 2B+D, но и B+D и просто D (когда пользователь направляет в сеть только пакетизированные данные). Возможны варианты интерфейса PRI с меньшим количеством каналов типа В, например 20B+D. Каналы типа В могут объединяться в один логический высокоскоростной канал с общей скоростью до 1920 Кбит/с. При установке у пользователя нескольких интерфейсов PRI все они могут иметь один канал типа D, при этом количество В каналов в том интерфейсе, который не имеет канала D, может увеличиваться до 24 или 31.
Основной интерфейс может быть основан на каналах типа Н. При этом общая пропускная способность интерфейса все равно не должна превышать 2,048 или 1,544 Мбит/с. Для каналов НО возможны интерфейсы 3HO+D для американского варианта и 5HO+D для европейского. Для каналов HI возможен интерфейс, состоящий только из одного канала НИ (1,536 Мбит/с) для американского варианта или одного канала HI 2 (1,920 Мбит/с) и одного канала D для европейского варианта.
23. Подключение оборудования пользователей в СПД ISDN
Подключение пользовательского оборудования к СПД ISDN осуществляется в соответствии со схемой подключения, показанной на рисунке 5-18. Все оборудование пользователей делится на функциональные группы, и в зависимости от группы различается несколько типов точек подключения (reference points) оборудования.
Для подключения Устройств функциональной группы NT1 (Network Termination 1) используют точку подключения типа U. Фактически NT1 представляет собой устройство, которое работает на физическом уровне и образует дуплексный канал с соответствующим устройством, установленном на территории оператора СПД ISDN. Если пользователь подключен через интерфейс BRI, то абонентская линия - обычное окончание аналоговой телефонной сети, т.е. витая пара, используемое по стандарту DSL BRI (см. раздел 5.1.4.). Максимальная длина абонентской линии в этом случае составляет 5,5 км. При использовании интерфейса PRI абонентская линия представляет собой 4-х проводную линию, функционирующую по стандарту Т1 или Е1 с максимальной длиной около 1800 м.
Устройства функциональной группы NT2 (Network Termination 2) выполняют функции концентратора битовых потоков от оборудования пользователя, и осуществляет их мультиплексирование. Например, к этому типу оборудования относятся: офисная АТС (РВХ), обеспечивающая коммутацию каналов, коммутатор пакетов (например, по каналу D), простой мультиплексор TDM, который мультиплексирует несколько низкоскоростных битовых потоков в один канал типа В. Точка подключения оборудования типа NT2 к устройству NT1 имеет тип Т. Наличие этого типа оборудования не является обязательным в отличие от NT1.
Устройства функциональной группы ТЕ1 (Terminal Equipment 1)относятся к устройствам, которые поддерживают интерфейс пользователя BRI или PRI. Точка подключения типа S соответствует точке подключения отдельного терминального оборудования, поддерживающего один из интерфейсов пользователя ISDN. Таким оборудованием может быть цифровой телефон или факс-аппарат. Так как оборудование типа NT2 может отсутствовать, то точки типов S и Т объединяются и обозначаются как S/T.
Устройства функциональной группы ТЕ2 (Terminal Equipment 2)представляют собой устройства, которые не поддерживают интерфейс BRI или PRI. Таким устройством может быть компьютер, устройства с последовательными интерфейсами, не относящимися к ISDN, например RS-232C, Х.21 или V.35. Для подключения такого устройства к СПД ISDN необходимо использовать терминальный адаптер (Terminal Adaptor, ТА). Для компьютеров терминальные адаптеры выпускаются в формате сетевых адаптеров - как встраиваемая карта.
Физически интерфейс в точке S/T представляет собой 4-проводную линию. Так как кабель между устройствами ТЕ1 или ТА и сетевым окончанием NT1 или NT2 обычно имеет небольшую длину, то разработчики стандартов ISDN решили не усложнять оборудование, так как организация дуплексного режима на 4-проводной линии намного легче, чем на 2-проводной. Для интерфейса BRI в качестве метода кодирования выбран биполярный AMI, причем логическая единица кодируется нулевым потенциалом, а логический ноль - чередованием потенциалов противоположной полярности. Для интерфейса PRI используются коды, те же, что и для интерфейсов Т1 и Е1.
Адресация в сетях ISDN
Технология ISDN разрабатывалась как основа всемирной телекоммуникационной сети, позволяющей связывать как телефонных абонентов, так и абонентов других глобальных сетей - компьютерных, телексных. Поэтому при разработке схемы адресации узлов ISDN необходимо было, во-первых, сделать эту схему достаточно емкой для всемирной адресации, а во-вторых, совместимой со схемами адресации других сетей, чтобы абоненты этих сетей, в случае соединения своих сетей через сеть ISDN, могли бы пользоваться привычными форматами адресов. Есть разные подходы к созданию схем адресации. Например, разработчики стека TCP/IP пошли по пути введения собственной системы адресации, независимой от систем адресации объединяемых сетей. Разработчики технологии ISDN пошли по другому пути - они решили добиться использования в адресе ISDN адресов объединяемых сетей.
Основное назначение ISDN - это передача телефонного трафика. Поэтому за основу адреса ISDN был взят формат международного телефонного плана номеров, описанный в стандарте МСЭ E.163. Однако этот формат был расширен для поддержки большего числа абонентов и для использования в нем адресов других сетей, например Х.25. Стандарт адресации в сетях ISDN получил номер Е.164.
Формат Е.163 предусматривает до 12 десятичных цифр в номере, а формат адреса ISDN в стандарте Е.164 расширен до 55 десятичных цифр. В сетях ISDN различают номер абонента и адрес абонента. Номер абонента соответствует точке Т подключения всего пользовательского оборудования к сети. Например, вся офисная АТС может идентифицироваться одним номером ISDN. Номер ISDN состоит из 15 десятичных цифр и делится, как и телефонный номер по стандарту Е.163, на поле «Код страны» (от 1 до 3 цифр), поле «Код города» и поле «Номер абонента». Адрес ISDN включает номер плюс до 40 цифр подадреса. Подадрес используется для нумерации терминальных устройств за пользовательским интерфейсом, то есть подключенных к точке S. Например, если на предприятии имеется офисная АТС, то ей можно присвоит один номер, например 7-095-640-20-00, а для вызова абонента, имеющего подадрес 134, внешний абонент должен набрать номер 7-095-640-20-00-134.
При вызове абонентов из сети, не относящейся к ISDN, их адрес может непосредственно заменять адрес ISDN. Например, адрес абонента сети Х.25, в которой используется система адресации по стандарту X.I 21, может быть помещен целиком в поле адреса ISDN, но для указания, что это адрес стандарта Х.121, ему должно предшествовать поле префикса, в которое помещается код стандарта адресации, в данном случае стандарта Х.121. Коммутаторы сети ISDN могут обработать этот адрес корректно и установить связь с нужным абонентом сети Х.25 через сеть ISDN либо, коммутируя канал типа В с коммутатором Х.25, либо передавая данные по каналу типа D в режиме коммутации пакетов. Правила формирования префикса определяет стандарт ISO 7498. Стандарт ISO 7498 определяет достаточно сложный формат адреса и мы tuj здесь рассматривать не будет. Желающие могут найти его краткое описание в [lanhelper].
Еще одним способом вызова абонентов из других сетей является указание в адресе ISDN двух адресов: адреса ISDN пограничного устройства, например, соединяющего сеть ISDN с сетью Х.25, и адреса узла в сети Х.25. Адреса должны разделяться специальным разделителем. Два адреса используются за два этапа - сначала сеть ISDN устанавливает соединение типа коммутируемого канала с пограничным устройством, присоединенным к сети ISDN, а затем передает ему вторую часть адреса, чтобы это устройство осуществило соединение с требуемым абонентом.
24. Стек протоколов СПД ISDN
В СПД ISDN есть два стека протоколов: стек каналов типа D и стек каналов типа В.
Рис. 6.19.Структура сети ISDN
Каналы типа D образуют достаточно традиционную сеть с коммутацией пакетов. Прообразом этой сети послужила технология сетей Х.25. Для сети каналов D определены три уровня протоколов: физический протокол определяется стандартом 1.430/431, канальный протокол LAP-D определяется стандартом Q.921, а на пакетном уровне может использоваться протокол Q.931, с помощью которого выполняется коммутация вызова абонента службы с коммутацией каналов, или же протокол Х.25 - в этом случае в кадры протокола LAP-D вкладываются пакеты Х.25 и коммутаторы ISDN выполняют роль коммутаторов Х.25.
Для целей мониторинга и управления СПД ISDN сеть каналов типа D использует, так называемую, систему сигнализации номер 7 (Signal System Number 7, SS7). Система SS7 была разработана для целей внутреннего мониторинга и управления коммутаторами телефонной сети общего назначения. Эту системы мы здесь рассматривать не будем. Отметим лишь, что конечному пользователю услуги служба SS7недоступны, так как сообщениями SS7 коммутаторы сети обмениваются только между собой.
Каналы типа В образуют сеть с коммутацией цифровых каналов. В терминах модели OSI на каналах типа В в коммутаторах сети ISDN определен только протокол физического уровня - протокол 1.430/431. Коммутация каналов типа В происходит по указаниям, полученным по каналу D. Когда пакеты протокола Q.931 маршрутизируются коммутатором, то при этом происходит одновременная коммутация очередной части составного канала от исходного абонента к конечному.
Протокол LAP-D является аналогом протокола LAP-B в СПД Х.25 и принадлежит семейству HDLC и обладает всеми родовыми чертами этого семейства, но отличается некоторыми особенностями. Адрес кадра LAP-D состоит из двух байт - один байт определяет код службы, которой пересылаются вложенные в кадр пакеты, а второй используется для адресации одного из терминалов, если у пользователя к абонентской линии NT1 подключено несколько терминалов. Терминальное устройство может поддерживать разные службы - службу установления соединения по протоколу Q.931, службу коммутации пакетов Х.25, службу мониторинга сети и т. п. Протокол LAP-D обеспечивает два режима работы: с установлением соединения (единственный режим работы протокола LLC2) и без установления соединения (режим LLC1 стандарта IEEE 802.1). Последний режим используется, например, для управления и мониторинга сети.
25. Передача данных в АТМ сетях
Как уже было сказано АТМ - это асинхронный способ передачи. В стандарте Т1 данные передаются строго синхронно, так, как показано на рисунке 2-64. Каждые 125 мксек порождается новый кадр. Эта скорость поддерживается специальными часами - мастер-таймером. Каждый слот в кадре содержит один бит из определенного источника. Порядок сканирования источников строго фиксирован.
В АТМ нет строго порядка поступления ячеек от различных источников. Ячейки могут поступать от разных источников и в разном порядке. Не важно даже, чтобы поток ячеек от одного компьютера был непрерывен. Если возникают разрывы, то они заполняются ячейками ожидания.
В АТМ не стандартизован формат самой ячейки. Требуется только, чтобы ячейки могли передаваться носителями (кадрами, фреймами и т.п.) в рамках таких стандартов, как Т1, Т3, Е1, SONET, FDDI и т.п.
В настоящее время скорость 155,52 Mбит/сек. является стандартной для АТМ, равно как и учетверенная скорость - 622,08 Mбит/сек. Однако в ближайшем будущем ожидается достижение 44 736 Mбит/сек.
Стандартной средой передачи для АТМ является оптоволокно. Однако на расстояниях в сотни метров можно использовать коаксиал или витую пару 5-й категории. Оптоволокно может покрывать расстояния на многие километры. Каждая волоконно-оптическая линия соединяет либо компьютер с АТМ-переключателем, либо два АТМ-переключателя. АТМ-линии – это соединения типа «точка-точка». На одной линии не может находиться более одного источника ячеек. По каждой линии передача возможна только в одном направлении, поэтому для обеспечения полного дуплекса нужны две АТМ-линии. С помощью АТМ-переключателей возможно дублирование одной и той же ячейки для передачи этой ячейки по нескольким линиям. Так реализуют режим вещания, т.е. передачу от одного ко многим.