Главная » Просмотр файлов » СКИПОД ответы на билеты

СКИПОД ответы на билеты (1127807), страница 8

Файл №1127807 СКИПОД ответы на билеты (СКИПОД ответы на билеты) 8 страницаСКИПОД ответы на билеты (1127807) страница 82019-05-11СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 8)

Метакомпьютер может не иметь постоянной конфигурации - отдельные компоненты могут включаться в его конфигурацию или отключаться от нее; при этом технологии метакомпьютинга обеспечивают непрерывное функционирование системы в целом. Современные исследовательские проекты в этой области направлены на обеспечение прозрачного доступа пользователей через Интернет к необходимым распределенным вычислительным ресурсам, а также прозрачного подключения простаивающих вычислительных систем к метакомпьютерам.

[править] Вычислительные кластеры.

Вычислительные кластеры (cluster) – группа ЭВМ (серверов), связанная между собой системной сетью и функционирующая с точки зрения пользователя как единый вычислительный узел. Локальные сети отличаются от кластеров тем, что узлы локальной сети используются индивидуально, в соответствии со своим назначением. В свою очередь кластеры разделяются на Высокоскоростные (High Performance, HP) и Системы Высокой Готовности (High Availability, HA), а также Смешанные Системы.

Высокоскоростные системы предназначены для задач, которые требуют больших вычислительных мощностей: обработка изображений, научные исследования, математическое моделирование и т. д.

Кластеры высокой готовности используются в банковских операциях, электронной коммерции и т д.

Архитектура. Кластер - это набор рабочих станций (или даже ПК) общего назначения, используется в качестве дешевого варианта массивно-параллельного компьютера. Для связи узлов используется одна из стандартных сетевых технологий (Fast/Gigabit Ethernet, Myrinet) на базе шинной архитектуры или коммутатора. При объединении в кластер компьютеров разной мощности или разной архитектуры, говорят о гетерогенных (неоднородных) кластерах. Узлы кластера могут одновременно использоваться в качестве пользовательских рабочих станций. В случае, когда это не нужно, узлы могут быть существенно облегчены и/или установлены в стойку.

Примеры NT-кластер в NCSA, Beowulf-кластеры.

Операционная система Используются стандартные для рабочих станций ОС, чаще всего, свободно распространяемые - Linux/FreeBSD, вместе со специальными средствами поддержки параллельного программирования и распределения нагрузки.

Модель программирования Программирование, как правило, в рамках модели передачи сообщений (чаще всего - MPI). Дешевизна подобных систем оборачивается большими накладными расходами на взаимодействие параллельных процессов между собой, что сильно сужает потенциальный класс решаемых задач.

[править] Матричные параллельные мультипроцессоры.

Архитектура Система состоит из однородных вычислительных узлов (объединенных в матрицы или гиперкубы), включающих:

  • один или несколько центральных процессоров (обычно RISC),

  • локальную память (прямой доступ к памяти других узлов невозможен),

  • коммуникационный процессор или сетевой адаптер

  • иногда - жесткие диски (как в SP) и/или другие устройства В/В

К системе могут быть добавлены специальные узлы ввода-вывода и управляющие узлы. Узлы связаны через некоторую коммуникационную среду (высокоскоростная сеть, коммутатор и т.п.)

Примеры IBM RS/6000 SP2, Intel PARAGON/ASCI Red, CRAY T3E, Hitachi SR8000, транспьютерные системы Parsytec. Масштабируемость Общее число процессоров в реальных системах достигает нескольких тысяч (ASCI Red, Blue Mountain).

Операционная система Существуют два основных варианта:

  • Полноценная ОС работает только на управляющей машине (front-end), на каждом узле работает сильно урезанный вариант ОС, обеспечивающие только работу расположенной в нем ветви параллельного приложения. Пример: Cray T3E.

  • На каждом узле работает полноценная UNIX-подобная ОС (вариант, близкий к кластерному подходу, однако скорость выше, чем в кластере). Пример: IBM RS/6000 SP + ОС AIX, устанавливаемая отдельно на каждом узле.

Модель программирования Программирование в рамках модели передачи сообщений (MPI, PVM, BSPlib)

[править] Симметричные мультипроцессоры.

Системы данного класса: SMP (Scalable Parallel Processor, может всё же Symmetric Multiprocessing?) состоят из нескольких однородных процессоров и массива общей памяти (разделяемой памяти – shared memory): любой процессор может обращаться к любому элементу памяти. По этой схеме построены 2,4 процессорные SMP сервера на базе процессоров Intel, НР и т. д., причем процессоры подключены к памяти с помощью общей шины. Системы с большим числом процессоров (но не более 32) подключаются к общей памяти, разделенной на блоки, через не блокирующийся полный коммутатор: crossbar. Любой процессор системы получает данное по произвольному адресу памяти за одинаковое время, такая структура памяти называется: UMA - Uniform Memory Access (Architecture). Пример:НР-9000. Дальнейшее масштабирование (увеличение числа процессоров системы) SMP систем обеспечивается переходом к архитектуре памяти: NUMA - Nоn Uniform Memory Access. По схеме, называемой, этой иногда, кластеризацией SMP, соответствующие блоки памяти двух (или более) серверов соединяются кольцевой связью, обычно по GCI интерфейсу. При запросе данного, расположенного вне локального с сервере диапазона адресов, это данное по кольцевой связи переписывается дублируется в соответствующий блок локальной памяти, ту часть его, которая специально отводится для буферизации глобальных данных и из этого буфера поставляется потребителю. Эта буферизация прозрачна (невидима) пользователю, для которого вся память кластера имеет сквозную нумерацию, и время выборки данных, не локальных в сервере, будет равно времени выборки локальных данных при повторных обращениях к глобальному данному, когда оно уже переписано в буфер. Данный аппарат буферизации есть типичная схема кэш памяти. Так как к данным возможно обращение из любого процессора кластера, то буферизация, размножение данных требует обеспечение их когерентности. Когерентность данных состоит в том, что при изменении данного все его потребители должны получать это значение. Проблема когерентности усложняется дублированием данных еще и в процессорных кэшах системы. Системы, в которых обеспечена когерентность данных, буферизуемых в кэшах, называются кэш когерентными (cc-cache coherent), а архитектура памяти описываемого кластера: cc- NUMA (cache coherent Nоn Uniform Memory Access). Классической архитектурой принято считать систему SPP1000.

[править] Архитектура памяти cc-NUMA.

cc-NUMA – “неоднородный доступ к памяти с поддержкой когерентности кэшей”. Логически память NUMA системы представляется единым сплошным массивом, но распределена между узлами. Любые изменения сделанные каким-либо процессором в памяти становятся доступны всем процессорам благодаря механизму поддержания когерентности кэшей. Архитектура cc-NUMA предполагает кэширование как вертикальных (процессор - локальная память) так и горизонтальных (узел - узел) связей. Кэширование вертикальных связей позволяет организовать каждый узел как UMA компьютер, позволяя получить преимущества UMA архитектуры используя небольшое количество процессоров (обычно 2 или 4) над общей памятью и увеличивая тем самым производительность до 4 раз. В тоже время, возможность комбинирования в одной вычислительной системе множества узлов UMA данной архитектуры позволяет наращивать мощность, не увеличивая слишком количества процессоров в каждом узле. А это позволяет использовать преимущества UMA архитектур, и одновременно имея большое количество процессоров в одной вычислительной системе.

На рисунке ниже представлены различия между NUMA и cc-NUMA архитектурами:

Общая структура архитектуры NUMA

Общая структура архитектуры cc-NUMA.

Обозначения: P – процессор, С – кэш, М – память, Interconnection network – соединяющая сеть.

В системе CC-NUMA физически распределенная память объединяется, как в любой другой SMP-архитектуре, в единый массив. Не происходит никакого копирования страниц или данных между ячейками памяти. Адресное пространство в данных архитектурах делится между узлами. Данные, хранящиеся в адресном пространстве некоторого узла, физически хранятся в этом же узле. Нет никакой программно - реализованной передачи сообщений. Существует просто одна карта памяти, с частями, физически связанными медным кабелем, и очень умные (в большей степени, чем объединительная плата) аппаратные средства. Аппаратно - реализованная кэш-когерентность означает, что не требуется какого-либо программного обеспечения для сохранения множества копий обновленных данных или для передачи их между множеством экземпляров ОС и приложений. Со всем этим справляется аппаратный уровень точно так же, как в любом SMP-узле, с одной копией ОС и несколькими процессорами.

Архитектура cc-NUMA

[править] Парадигмы программирования для параллельных вычислителей.

  • Модель Передачи сообщений. В этой модели процессы независимы и имеют собственное адресное пространство. Основной способ взаимодействия и синхронизации – передача сообщений. Стандарт интерфейса передачи сообщений является MPI.

  • Модель с общей памятью. В этой модели процессы имеют единое адресное пространство. Доступ к общим данным регламентируется с помощью примитивов синхронизации. Стандартом для моделей с общей памятью является OpenMP.

  • Модель параллелизма по данным. В этой модели данные разделяются между узлами вычислительной системы , а последовательная программа их обработки преобразуется компилятором либо в модель передачи сообщений, либо в модель с общей памятью. При этом вычисления распределяются по правилу собственных вычислений: каждый процессор выполняет вычисление данных, распределенных на него. Примерами могут являться стандарты HPF1 HPF2. На модели параллелизма по данным была разработана отечественная система DVM.

[править] Нетрадиционные вычислители.

[править] Графические процессоры

Графический процессор (англ. Graphics Processing Unit, GPU) — отдельное устройство персонального компьютера или игровой приставки, выполняющее графический рендеринг. Современные графические процессоры очень эффективно обрабатывают и изображают компьютерную графику, благодаря специализированной конвейерной архитектуре они намного эффективнее в обработке графической информации, чем типичный центральный процессор.

Графический процессор в современных видеоадаптерах применяется в качестве ускорителя трёхмерной графики, однако его можно использовать в некоторых случаях и для вычислений (GPGPU). Отличительными особенностями по сравнению с ЦПУ являются: архитектура, максимально нацеленная на увеличение скорости расчёта текстур и сложных графических объектов; ограниченный набор команд.

Примером может служить чип R520 от ATI или G70 от nVidia.

[править] DSP

Цифровой сигнальный процессор (англ. Digital signal processor, DSP; сигнальный микропроцессор, СМП; процессор цифровых сигналов, ПЦС) — специализированный микропроцессор, предназначенный для цифровой обработки сигналов (обычно в реальном масштабе времени).

[править] Особенности ахитектуры

Архитектура сигнальных процессоров, по сравнению с микропроцессорами настольных компьютеров, имеет некоторые особенности:

  • Гарвардская архитектура (разделение памяти команд и данных), как правило модифицированная;

    • Большинство сигнальных процессоров имеют встроенную оперативную память, из которой может осуществляться выборка нескольких машинных слов одновременно. Нередко встроено сразу несколько видов оперативной памяти, например, в силу **Гарвардской архитектуры бывает отдельная память для инструкций и отдельная - для данных.

  • Некоторые сигнальные процессоры обладают одним или даже несколькими встроенными постоянными запоминающими устройствами с наиболее употребительными подпрограммами, таблицами и т.п..

  • Аппаратное ускорение сложных вычислительных инструкций, то есть быстрое выполнение операций, характерных для цифровой обработки сигналов, например, операция «умножение с накоплением» (MAC) (Y := X + A × B) обычно исполняется за один такт.

  • «Бесплатные» по времени циклы с заранее известной длиной. Поддержка векторно-конвейерной обработки с помощью генераторов адресных последовательностей.

  • Детерминированная работа с известными временами выполнения команд, что позволяет выполнять планирование работы в реальном времени.

  • Сравнительно небольшая длина конвейера, так что незапланированные условные переходы могут занимать меньшее время, чем в универсальных процессорах.

  • Экзотический набор регистров и инструкций, часто сложных для компиляторов. Некоторые архитектуры используют VLIW.

  • По сравнению с микроконтроллерами, ограниченный набор периферийных устройств — впрочем, существуют «переходные» чипы, сочетающие в себе свойства DSP и широкую периферию микроконтроллеров.

[править] Области применения

  • Коммуникационное оборудование:

    • Уплотнение каналов передачи данных;

    • Кодирование аудио- и видеопотоков;

  • Системы гидро- и радиолокации;

  • Распознавание речи и изображений;

  • Речевые и музыкальные синтезаторы;

  • Анализаторы спектра;

  • Управление технологическими процессами;

  • Другие области, где необходима быстродействующая обработка сигналов, в том числе в реальном времени.

[править] Организация вычислений на графе.

Характеристики

Тип файла
Документ
Размер
327,92 Kb
Высшее учебное заведение

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6549
Авторов
на СтудИзбе
300
Средний доход
с одного платного файла
Обучение Подробнее