Главная » Просмотр файлов » Ю.С. Ченцов - Введение в клеточную биологию. Общая цитология

Ю.С. Ченцов - Введение в клеточную биологию. Общая цитология (1120992), страница 10

Файл №1120992 Ю.С. Ченцов - Введение в клеточную биологию. Общая цитология (Ю.С. Ченцов - Введение в клеточную биологию. Общая цитология (DOC)) 10 страницаЮ.С. Ченцов - Введение в клеточную биологию. Общая цитология (1120992) страница 102019-05-09СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 10)

Однако при метаболической активации не всякие участки конденсированного хроматина могут переходить в диффузную форму. Еще в начале 30-х годов было замечено Э. Гейтцем, что в интерфазных ядрах существуют постоянные участки конденсированного хроматина, наличие которого не зависит от степени дифференцированнности ткани или от функциональной активности клеток. Такие участки получили название гетерохроматина, в отличие от остальной массы хроматина – эухроматина (собственно хроматина). По этим представлениям, гетерохроматин – компактные участки хромосом, которые в профазе появляются раньше других частей в составе митотических хромосом, и в телофазе не деконденсируются, переходя в интерфазное ядро в виде интенсивно красящихся плотных структур (хромоцентры). Первоначально понятие гетерохроматина имело сугубо морфологическое значение, потому что, изучая препараты окрашенных ядер, конечно нельзя знать, может ли данный участок конденсированного хроматина, хромоцентр, перейти в будущем в разрыхленное, эухроматическое состояние, или нет. В связи с этим в специальной цитологической литературе часто без всякого основания любой участок конденсированного хроматина стали называть гетерохроматином. Процесс же общей конденсации хроматина, например в ядрах лейкоцитов, называли гетерохроматизацией ядер. На самом же деле в составе ядерного хроматина только лишь некоторые участки практически никогда не теряют особого конденсированного состояния. Такими постоянно конденсированными зонами чаще всего являются центромерные и теломерные участки хромосом. Кроме них постоянно конденсированными могут быть также некоторые участки, входящие в состав плечей хромосом – вставочный или интеркалярный гетерохроматин, который в ядрах также представлен в виде хромоцентров. Такие постоянно конденсированные участки хромосом в интерфазных ядрах сейчас принято называть конститутивным (постоянным) гетерохроматином. Здесь же необходимо отметить, что участки конститутивного гетерохроматина обладают целым рядом особенностей, которые отличают его от остального хроматина. Конститутивный гетерохроматин генетически не активен, он не транскрибируется, реплицируется он позже всего остального хроматина, в его состав входит особая (сателлитная) ДНК, обогащенная высокоповторяющимися последовательностями нуклеотидов (см. ниже); он локализован в центромерных, теломерных и интеркалярных зонах митотических хромосом. Доля конститутивного хроматина может быть неодинаковой у разных объектов. Так у млекопитающих на него приходится 10-15% всего генома, а у некоторых амфибий – даже до 60%. Функциональное значение конститутивного гетерохроматина до конца не выяснено, предполагается, что он несет ряд важных функций, связанных со спариванием гомологов в мейозе, со структуризацией интерфазного ядра, с некоторыми регуляторными функциями.

Вся остальная, основная масса хроматина ядра может менять степень своей компактизации в зависимости от функциональной активности, она относится к эухроматину. Эухроматические неактивные участки, которые находятся в конденсированном состоянии, стали называть факультативным гетерохроматином, подчеркивая необязательность такого его состояния. Хорошим примером факультативного гетерохроматина может служить X-хромосома в организме человека. В клетках мужской особи X-хромосома деконденсирована, она активна, транскрибируется и морфологически не выявляется из-за своего рыхлого, диффузного состояния. В клетках женского организма, где присутствуют две X-хромосомы, одна из них находится в активном, диффузном состоянии, а вторая – в неактивном, конденсированном, она временно гетерохроматизована. В этом состоянии она может существовать в течение всей жизни организма. Но потомки ее, попадая в клетки мужского организма следующего поколения, снова будут активированы.

В дифференцированных клетках всего лишь около 10% генов находится в активном состоянии, остальные гены инактивированы и, соответственно, находятся в составе конденсированного хроматина (факультативный гетерохроматин). Это обстоятельство объясняет, почему большая часть хроматина ядра структурирована.

В таблице 1. даны сравнительные общие характеристики эухроматических и гетерохроматических районов интерфазных хромосом.

Таблица 1.

Свойства

Эухроматин

Гетерохроматин конститутивный

Активный

Неактивный

(факультативный гетерохроматин)

Структура диффузный конденсированный конденсированный

Синтез РНК + - -

Синтез ДНК + + +

поздняя репликация

Тип нуклеотид- уникальные, уникальные, высокоповторяющаяся,

ных последова- умеренные умеренные сателлитная ДНК

тельностей ДНК повторы повторы

Локализация плечи плечи центромера, теломера,

хромосом хромосом интеркалярный гетеро-

хроматин

Хромосомный цикл

Как известно, половые женские и мужские клетки несут одинарный набор хромосом и, следовательно, содержат в 2 раза меньше ДНК, чем все остальные клетки организма. Половые клетки (сперматозоиды и ооциты) с одинарным набором хромосом называют гаплоидными. Плоидность (от греч. ploos –кратность) обозначают буквой n, так, клетки с 1n – гаплоидны, с 2n – диплоидны, с 3n – триплоидны и т.д. Соответственно количество ДНК на клетку (с) зависит от ее плоидности: клетки с 2n числом хромосом содержат 2с количества ДНК. При оплодотворении происходит слияние двух клеток, каждая из которых несет 1n набор хромосом, поэтому образуется исходная диплоидная (2n, 2c) клетка, зигота. В дальнейшем в результате деления диплоидной зиготы и последующего деления диплоидных клеток разовьется организм, клетки которого, кроме половых, будут диплоидными.

Однако мы знаем, что процессу деления клеток предшествует фаза синтеза, редупликации ДНК, что должно приводить к появлению клеток с 4с количеством ДНК, у которых количество хромосом 4n, т.е. в два раза больше, чем у исходной диплоидные клетки. И только после деления такой тетраплоидной (4с) клетки снова возникнут две исходные диплоидные клетки.

В ядрах интерфазных клеток выявить с помощью морфологических методов тела хромосом очень трудно. Собственно хромосомы как четкие, плотные, хорошо видимые в световой микроскоп тела выявляются только незадолго перед клеточным делением. В самой же интерфазе хромосом как плотных тел не видно, так как они находятся в разрыхленном состоянии. В интерфазе происходит удвоение, редупликация хромосом. Этот период характеризуется синтезом ДНК, он называется синтетическим, или s-периодом. Как раз в это время в клетках обнаруживается количество ДНК большее, чем 2с. После окончания s-периода количество ДНК в интерфазном ядре равно 4с, ибо произошло полное удвоение хромосомного материала. Однако морфологически регистрировать удвоение числа хромосом на этой стадии не всегда удается. Собственно хромосомы как нитевидные плотные тела начинают обнаруживаться микроскопически в начале процесса деления клетки, а именно в профазе митотического деления клетки (рис. 31). Если попытаться подсчитать число хромосом в профазе, то их количество будет равно 2n. Но это ложное впечатление, потому что в профазе каждая из хромосом двойная в результате их редупликации. На этой стадии пара хромосом тесно соприкасается друг с другом, взаимно спирализуясь одна относительно другой, поэтому трудно увидеть двойственность всей структуры в целом. Позднее хромосомы в каждой такой паре начинают обосабливаться, раскручиваться. Такая двойственность хромосом в митозе наблюдается даже у живых клеток в конце профазы, когда видно, что общее число хромосом в такой начинающей делиться клетке равно 4n. Следовательно, уже в начале профазы хромосомы состояли из двух сестринских хромосом, или, как их еще называют, хроматид.

И в профазе, и в следующем периоде деления клетки – в метафазе –сестринские хромосомы остаются связанными друг с другом в виде пары. В метафазе происходит выстраивание хромосом в экваториальной плоскости клетки и окончательное их разъединение. И в профазе и в метафазе клетки остаются тетраплоидными.

В анафазе идет расхождение каждой из хромосом данной пары к противоположным полюсам клетки, после чего начинает делиться тело исходной клетки. Затем в телофазе разошедшиеся диплоидные (2n) наборы хромосом начинают деконденсироваться. Отдельные хромосомы теряют свои четкие очертания и теперь уже внутри нового интерфазного диплоидного ядра с 2с ДНК трудно узнать хромосомы, которые мы могли видеть во время митоза. Так заканчивается один хромосомный цикл и начинается следующий.

Общая морфология митотических хромосом

Хромосомы всех эукариотических клеток построены по одному плану. Они включают в себя три основных компонента: собственно тело хромосомы (плечо), теломерный, конечный участок, и центромеру. Наиболее просто устроены хромосомы дрожжевых клеток: палочковидное тело хромосомы на одном конце имеет теломеру, а на другом – центромеру (рис. 32). Хромосомы животных и растений также представляют собой палочковидные структуры разной длины с довольно постоянной толщиной, но обычно имеют два хромосомных плеча, соединенных в зоне центромеры. Эта зона называется первичной перетяжкой. Соответственно оба плеча хромосомы оканчиваются теломерами (рис. 32). Хромосомы с равными или почти равными плечами называют метацентрическими, с плечами неодинаковой длины – субметацентрическими. Палочковидные хромосомы с очень коротким, почти незаметным вторым плечом – акроцентрические.

В области первичной перетяжки (центромеры) расположен кинетохор - пластинчатая структура, имеющая форму диска. К нему подходят пучки микротрубочек митотического веретена, идущие в направлении к центриолям. Эти пучки микротрубочек принимают участие в движении хромосом к полюсам клетки при митозе.

Обычно каждая хромосома имеет только одну центромеру (моноцентрические хромосомы), но могут встречаться хромосомы дицентрические и полицентрические, т.е. обладающие множественными кинетохорами.

В зоне первичной перетяжки присутствует особая, центромерная, сателлитная ДНК, отличающаяся высоким уровнем повторенности нуклеотидных последовательностей.

Некоторые хромосомы имеют вторичную перетяжку. Последняя обычно расположена вблизи дистального конца хромосомы и отделяет маленький участок, спутник. Вторичные перетяжки называют, кроме того, ядрышковыми организаторами, так как именно на этих участках хромосом в интерфазе происходит образование ядрышка. Здесь же локализована ДНК, ответственная за синтез рРНК. В хромосомах человека ядрышковые организаторы расположены в коротких плечах вблизи центромер.

Плечи хромосом оканчиваются теломерами, конечными участками. Теломерные концы хромосом не способны соединяться с другими хромосомами или их фрагментами, в отличие от концов хромосом, лишенных теломерных участков (в результате разрывов), которые могут присоединяться к таким же разорванным концам других хромосом. В теломерах локализована особая теломерная ДНК, защищающая хромосому от укорачивания в процессе синтеза ДНК.

Размеры хромосом у разных организмов варьируют в широких пределах (рис. 33). Так, длина хромосом может колебаться от 0,2 до 50 мкм. Самые мелкие хромосомы обнаруживаются у некоторых простейших, грибов, водорослей, очень мелкие хромосомы – у льна и морского камыша; они настолько малы, что с трудом видны в световой микроскоп. Наиболее длинные хромосомы обнаружены у некоторых прямокрылых насекомых, у амфибий и у лилейных. Длина хромосом человека находится в пределах 1,5-10 мкм.

Число хромосом у различных объектов также значительно колеблется, но характерно для каждого вида животных и растений. У некоторых радиолярий число хромосом достигает 1000-1600. Рекордсменом среди растений по числу хромосом (около 500) является папоротник ужовник, 308 хромосом у тутового дерева, у речного рака 196 хромосом. Наименьшее количество хромосом (1 хромосома на гаплоидный набор) наблюдается у одной из рас аскариды, у сложноцветного Haplopappus gracilis всего 4 хромосомы (2 пары).

Совокупность числа, величины и морфологии хромосом называется кариотипом данного вида. Кариотип – это как бы лицо вида. Даже у близких видов хромосомные наборы отличаются друг от друга или по числу хромосом, или по величине хотя бы одной или нескольких хромосом, или по форме хромосом и по их структуре. Структура кариотипа данного вида не зависит ни от типа клеток, ни от возраста животного или растения. Все клетки индивидуумов одного вида имеют идентичные наборы хромосом. Простой морфологический анализ может убедительно показать различия в кариотипах даже у близких видов. Следовательно, структура кариотипа может быть таксономическим (систематическим) признаком, который все чаще используется в систематике животных и растений (рис. 34).

В последние годы в практику хромосомного анализа стали широко входить методы дифференциального окрашивания хромосом. Впервые метод был предложен Касперссоном, который показал, что при обработке препаратов митотических хромосом с помощью флуорохрома акрихиниприта во флуоресцентном микроскопе видна исчерченность по длине хромосом. В хромосомах были видны поперечные светящиеся полосы («бэнды») (Q– полосы, Q–окраска), расположение которых было характерно для каждой хромосомы.

Характеристики

Тип файла
Документ
Размер
1,68 Mb
Тип материала
Предмет
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6392
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее