Шпоры (1106648), страница 2
Текст из файла (страница 2)
8HI + H2SO4(конц) = 4I2 + H2S + 4H2O.
Сжигание хлора с водородом является основным промышленным способом получения HCl. Бром и иод реагируют с водородом более спокойно, однако выход невелик, поскольку равновесие Н2 + Х2 = 2НХ (Х = Br, I) смещено влево. Газообразные НХ выделяются при действии нелетучих сильных кислот на твердые ионные галогениды металлов : (на практике пользуются 70-85%-ным р-ром серной к-ты, т.к. реакция идет на поверхности кристаллов соли. Если брать конц. к-ту, осаждается NaHSO4. При использовании разб серной к-ты значительная часть HCl остается в р-ре. Выделяющийся HCL сушат над конц. серной к-той. Оксид фосфора для этого непригоден так как взаимодействует с HCL: P4O10 + 12HCL = 4POCL3 + 6H2O
CaF2 + H2SO4(конц) = CaSO4 + 2HF
NaCl + H2SO4(конц) = NaHSO4 + HCl
Большинство галогенидов неметаллов относятся к соединениям с ковалентной связью и гидролизуются с выделением соответствующего галогеноводорода, например,
SiCl4 + 4H2O = SiO2. 2H2O + 4HCl
Галогеноводороды образуются также при галогенировании органических соединений, например:
RH +Cl2 = RCl + HCl
Соляную кислоту получают растворением газообразного хлороводорода в воде. Хлороводород получают сжиганием водорода в хлоре. В лабораторных условиях используется разработанный ещё алхимиками способ, заключающийся в действии крепкой серной кислоты на поваренную соль:
NaCl + H2SO4(конц.) (150 °C) > NaHSO4 + HCl^
При температуре выше 550 °C и избытке поваренной соли возможно взаимодействие:
NaCl + NaHSO4 (>550 °C) = Na2SO4 + HCl^
Хлороводород прекрасно растворим в воде. Так, при 0 °C 1 объём воды может поглотить 507 объёмов HCl, что соответствует концентрации кислоты 45 %. Однако при комнатной температуре растворимость HCl ниже, поэтому на практике обычно используют 36-процентную соляную кислоту.
Промышленность.
Применяют в гидрометаллургии и гальванопластике (травление, декапирование), для очистки поверхности металлов при паянии и лужении, для получения хлоридов цинка, марганца, железа и др. металлов. В смеси с ПАВ используется для очистки керамических и металлических изделий (тут необходима ингибированная кислота) от загрязнений и дезинфекции. В пищевой промышленности зарегистрирована в качестве регулятора кислотности, пищевой добавки E507. Применяется для изготовления зельтерской (содовой) воды.
Медицина
Составная часть желудочного сока; разведенную соляную кислоту ранее назначали внутрь главным образом при заболеваниях, связанных с недостаточной кислотностью желудочного сока.
5. Гипогалогенитные кислотыHXO известны лишь в разбавленных водных растворах. Их получают взаимодействием галогена с суспензией оксида ртути:
2X2 + 2HgO + H2O = HgO. HgХ2+2HOX.
Гипогалогенитные кислоты являются слабыми. Растворы гипогалогенитов имеют сильно щелочную реакцию, а пропускание через них СО2 приводит к образованию кислоты, например,
NaClO + H2O + CO2 = NaHCO3 + HClO.
Высокую окислительную способность гипохлоритов иллюстрируют следующие реакции:
NaСlO +2NaI + H2O = NaCl + I2 + 2NaOH
2NaClO + MnCl2 + 4NaOH = Na2MnO4 + 4NaCl + 2H2O.
Из оксокислот HXO2 известны лишь хлористая кислота HClO2. Она не образуется при диспропорционировании HClO. Водные растворы HClO2 получают обработкой Вa(ClO2)2 серной кислотой с последующим отфильтровыванием осадка BaSO4 :
Ba(ClO2)2 + H2SO4 = BaSO4 + 2HClO2.
HClO2 является кислотой средней силы: рКа = 2.0 (табл.7). Хлориты используют для отбеливания. Их получают мягким восстановлением ClO2 в щелочной среде:
2СlO2 + Ba(OH)2 + H2O2 = Ba(ClO2)2 + 2H2O + O2
2СlO2 + PbO + 2NaOH = PbO2 + 2NaClO2 + H2O.
Оксокислоты HXO3 более устойчивы, чем HXO (см. реакции 1, 3-5, 7). Хлорноватая HClO3 кислота получены в растворах с концентрацией ниже 30%. Растворы HClO3 получают действием разбавленной H2SO4 на растворы cоответствующих солей, например,
Ba(ClO3)2 + H2SO4 = 2HClO3 + BaSO4 .
При концентрации растворов выше 30% кислоты HBrO3 и HClO3 разлагаются со взрывом. Водные растворы HXO3 являются сильными кислотами, соли более устойчивы к нагреванию, чем соответствующие кислоты. В частности, некоторые из иодатов встречаются в природе в виде минералов, например, лаутарит NaIO3. При нагревании твердого КСIO3 до 500оС возможно диспропорционирование 4KClO3 3KClO4 +KCl,
Хлорная кислота (Тпл.= -102оС, Ткип.= 90оС) получена в индивидуальном состоянии нагреванием твердой соли КClO4 с концентрированной H2SO4 с последующей отгонкой при пониженном давлении:
КClO4 ,тв.+ H2SO4,конц HClO4 + KHSO4
HClO4 легко взрывается при контакте с органическими веществами. Хлорная кислота - одна из сильных кислот. Бесцветная концентрированная HClO4 даже при комнатной температуре синтеза темнеет из-за образования оксидов хлора с более низкими степенями окисления. Устойчивость солей выше, чем соответствующих оксокислот HXO4. Кристаллы солей, например, KClO4, построены из ионов K+ и ClО, электростатическое взаимодействие которых увеличивает энергию кристаллической решетки и повышает стабильность.
6. Гипогалогенитные кислоты HXO известны лишь в разбавленных водных растворах. Их получают взаимодействием галогена с суспензией оксида ртути:
2X2 + 2HgO + H2O = HgO. HgХ2+2HOX.
Следует отметить особенность соединения HOF. Оно образуется при пропускании фтора над льдом при -400С и конденсацией образующегося газа при температуре ниже 0оС.
F2,газ + H2Oлед HOF + HF
HOF, в частности, не образует солей, а при его взаимодействии с водой появляется пероксид водорода:
HOF + H2O = H2O2 + HF
Гипогалогенитные кислоты являются слабыми. При переходе от хлора к иоду по мере увеличения радиуса и уменьшения
электроотрицательности атом галогена слабее смещает электронную плотность от атома кислорода и, тем самым, слабее поляризует связь Н-О. В результате кислотные свойства в ряду HClO - HBrO - HIO ослабляютсяИз оксокислот HXO2 известны лишь хлористая кислота HClO2. Она не образуется при диспропорционировании HClO. Водные растворы HClO2 получают обработкой Вa(ClO2)2 серной кислотой с последующим отфильтровыванием осадка BaSO4 :
Ba(ClO2)2 + H2SO4 = BaSO4 + 2HClO2.
HClO2 является кислотой средней силы: рКа = 2.0 (табл.7). Хлориты используют для отбеливания. Их получают мягким восстановлением ClO2 в щелочной среде:
2СlO2 + Ba(OH)2 + H2O2 = Ba(ClO2)2 + 2H2O + O2
2СlO2 + PbO + 2NaOH = PbO2 + 2NaClO2 + H2O.
Бромит бария удалось синтезировать по реакции:
Ba(BrO)2 + 2Br2 + 4KOH Ba(BrO2)2 +4KBr + 2Н2О.
Оксокислоты HXO3 более устойчивы, чем HXO (см. реакции 1, 3-5, 7 в 9.3). Хлорноватая HClO3 и бромноватая HBrO3 кислоты получены в растворах с концентрацией ниже 30%, а твердая йодноватая HIO3 выделена как индивидуальное вещество.
Растворы HClO3 и HBrO3 получают действием разбавленной H2SO4 на растворы cоответствующих солей, например,
Ba(ClO3)2 + H2SO4 = 2HClO3 + BaSO4 .
Водные растворы HXO3 являются сильными кислотами. В ряду HClO3-HBrO3-HIO3 наблюдается некоторое уменьшение силы кислот (табл.10). Это можно объяснить тем, что с ростом размера атома галогена прочность кратной связи О уменьшается, что приводит к уменьшению полярности связи H-O и уменьшению легкости отрыва от нее водорода молекулами воды. метаиодная кислота HIO4 и некоторые ее соли известны, иод(VII) из-за роста радиуса в ряду Сl-Br-I и повышения его координационного числа образует, главным образом, гидроксопроизводные состава (HO)5IO H5IO6, в которых атом иода октаэдрически окружен атомом кислорода и пятью гидроксильными группами
Бромная кислота HBrO4 известна лишь в растворах (не выше 6М), получаемых подкислением перброматов NaBrO4, которые, в свою очередь, удалось синтезировать окислением броматов фтором в разбавленных щелочных растворах (броматы можно окислить до перброматов с помощью XeF2 или электролитически) :
NaBrO3 + F2 + 2NaOH = NaBrO4 + 2NaF +H2O .
Хлорная кислота - одна из сильных кислот. По силе к ней приближается бромная кислота.Иодная кислота существует в нескольких формах, главными из которых являются ортоиодная H5IO6 и метаиодная HIO4 кислоты. Ортоиодная кислота образуется в виде бесцветных кристаллов при осторожном упаривании раствора, образующегося при обменной реакции
Ba3(H2IO6)2 + 3H2SO4 = 3BaSO4 + 2H5IO6.
Устойчивость солей выше, чем соответствующих оксокислот HXO4. Кристаллы солей, например, KClO4, построены из ионов K+ и ClО,
электростатическое взаимодействие которых увеличивает энергию кристаллической решетки и повышает стабильность.
8. В водородных оединениях Н2Э элементы имеют степень окисления (-2)Темодинамическая активность уменьшается от Н2О до Н2Те (по эн. Гибса) В обычных условиях - это ядовитые газы с неприятным запахом. Т. плавл. в ряду Н2S H2Se H2Te увелич, т.к. с увеличением числа электронов и размеров молекул усиливается ван-дер-ваальсово взаим. Вода имеет аномально выскоие темп. кипения и плавления для этой группы, т.к. за счёт водородных связей молекул взаим между её молекулами оч сильное. В расворах ведут себя как двухосн кислоты. Сила кислот в ряду от Н2О до Н2Те возрастает. Восстановительная способность тоже возрастает из-за увеличенияэтома происходит ослабление связей H - Э.
7. O S Se Te
Атомы имеют по 6 электронов на s p орбиталях внешнего уровня. В ряду элементов О-S-Se-Te-Po уменьшается энергия ионизации и электроотрицательность, увелимчивается размер атомов и ионов, усиливаются восстановительные свойства, ослабляются неметаллические признаки. Кислород по ЭОти уступает только фтору. Другие элементы (-1), (-2) с металлами, с неметаллами (+4), (+6) В живых организмах - O S Se (-2)
Хим. св-ва.
Сера:
S + 3F2 = SF6
S + Cl2 = SCl2
S + 6HNO3(конц.) = H2SO4 + 6NO2 ^ + 2H2O
S + 2H2SO4(конц.) = 3SO2 ^ + 2H2O
S + O2 = SO2
2Na + S = Na2S
3S + 6KOH = K2SO3 + 2K2S + 3H2O
Кислород.
4K + O2 > 2K2O
2Sr + O2 > 2SrO
2NO + O2 > 2NO2
CH3CH2OH + 3O2 > 2CO2 + 3H2O
2Na + O2 > Na2O2
2BaO + O2 > 2BaO2
H2 + O2 > H2O2
Na2O2 + O2 > 2NaO2
Селен.
Селен — аналог серы. Так же, как и серу, его можно сжечь на воздухе. Горит синим пламенем, превращаясь в двуокись SeO2. Только SeO2 — не газ, а кристаллическое вещество, хорошо растворимое в воде. Получить селенистую кислоту (SeO2 + H2O > H2SeO3) ничуть не сложнее, чем сернистую. А действуя на неё сильным окислителем (например, HClO3), получают селеновую кислоту H2SeO4, почти такую же сильную, как серная. Химически теллур менее активен, чем сера. Он растворяется в щелочах, поддается действию азотной и серной кислот, но в разбавленной соляной кислоте растворяется слабо. С водой металлический теллур начинает реагировать при 100°С, а в виде порошка он окисляется на воздухе даже при комнатной температуре, образуя оксид Te02. При нагреве на воздухе теллур сгорает, образуя Te02. Это прочное соединение обладает меньшей летучестью, чем сам теллур. Поэтому для очистки теллура от оксидов их восстанавливают проточным водородом при 500-600 °С. В расплавленном состоянии теллур довольно инертен, поэтому в качестве контейнерных материалов при его плавке применяют графит и кварц.
Полоний.
Металлический полоний быстро окисляется на воздухе. Известны диоксид полония (РоО2)x и монооксид полония РоО. С галогенами образует тетрагалогениды. При действии кислот переходит в раствор с образованием катионов Ро2+ розового цвета:
Ро + 2HCl > PoCl2 + Н2^.
При растворении полония в соляной кислоте в присутствии магния образуется полоноводород:
Ро + Mg + 2HCl > MgCl2 + H2Po,
9. Кислород — самый распространенный на Земле элемент, на его долю (в составе различных соединений, главным образом силикатов), приходится около 47,4 % массы твердой земной коры. Морские и пресные воды содержат огромное количество связанного кислорода — 88,8 % (по массе), в атмосфере содержание свободного кислорода составляет 20,95 % по объёму и 23,12 % по массе. Более 1500 соединений земной коры в своем составе содержат кислород. Кислород входит в состав многих органических веществ и присутствует во всех живых клетках. По числу атомов в живых клетках он составляет около 25 %, по массовой доле — около 65 %.Кислород — химически активный неметалл, является самым лёгким элементом из группы халькогенов. Простое вещество кислород (CAS-номер: 7782-44-7) при нормальных условиях — газ без цвета, вкуса и запаха, молекула которого состоит из двух атомов кислорода (формула O2), в связи с чем его также называют дикислород. Жидкий кислород имеет светло-голубой цвет. В настоящее время в промышленности кислород получают из воздуха. В лабораториях пользуются кислородом промышленного производства, поставляемым в стальных баллонах под давлением около 15 МПа. Важнейшим лабораторным способом его получения служит электролиз водных растворов щелочей. Небольшие количества кислорода можно также получать взаимодействием раствора перманганата калия с подкисленным раствором пероксида водорода. Также хорошо известны и успешно применяются в промышленности кислородные установки, работающие на основе мембранной и азотной технологий. При нагревании перманганат калия KMnO4 разлагается до манганата калия K2MnO4 и диоксида марганца MnO2 с одновременным выделением газообразного кислорода O2:
2KMnO4 > K2MnO4 + MnO2 + O2^
В лабораторных условиях получают также каталитическим разложением пероксида водорода Н2О2:
2Н2О2 > 2Н2О + О2^
Катализатором является диоксид марганца (MnO2) или кусочек сырых овощей (в них содержатся ферменты, ускоряющие разложение пероксида водорода). Кислород можно также получить каталитическим разложением хлората калия (бертолетовой соли) KClO3: