Диссертация (1105684), страница 34
Текст из файла (страница 34)
Synthesis of structurally well-defined and liquid-phaseprocessable graphene nanoribbons // Nature chemistry.– 2014.– V. 6.– N. 2.– P. 126-132.Kimouche, A., Ervasti, M.M., Drost, R., Halonen, S., Harju, A., Joensuu, P.M., Sainio, J.,Liljeroth, P. Ultra-narrow metallic armchair graphene nanoribbons // Nature communications.–2015.– V. 6.– N. P. 10177.Joly, V.L.J., Kiguchi, M., Hao, S.-J., Takai, K., Enoki, T., Sumii, R., Amemiya, K., Muramatsu,H., Hayashi, T., Kim, Y.A., Endo, M., Campos-Delgado, J., López-Urías, F., Botello-Méndez, A.,Terrones, H., Terrones, M., Dresselhaus, M.S. Observation of magnetic edge state in graphenenanoribbons // Physical Review B.– 2010.– V. 81.– N. 24.– P.Abdolhosseinzadeh, S., Asgharzadeh, H., Seop Kim, H.
Fast and fully-scalable synthesis ofreduced graphene oxide // Scientific reports.– 2015.– V. 5.– N. P. 10160.Gao, W., Alemany, L.B., Ci, L., Ajayan, P.M. New insights into the structure and reduction ofgraphite oxide // Nature chemistry.– 2009.– V. 1.– N. 5.– P. 403-408.Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y.,Nguyen, S.T., Ruoff, R.S.
Synthesis of graphene-based nanosheets via chemical reduction ofexfoliated graphite oxide // Carbon.– 2007.– V. 45.– N. 7.– P. 1558-1565.Jiao, Y., Zheng, Y., Jaroniec, M., Qiao, S.Z. Origin of the electrocatalytic oxygen reductionactivity of graphene-based catalysts: a roadmap to achieve the best performance // Journal of theAmerican Chemical Society.– 2014.– V. 136.– N. 11.– P.
4394-4403.178206.207.208.209.210.211.212.213.214.215.216.217.218.219.220.221.Wang, Z.J., Weinberg, G., Zhang, Q., Lunkenbein, T., Klein-Hoffmann, A., Kurnatowska, M.,Plodinec, M., Li, Q., Schloegl, R., Willinger, M.G. Direct observation of graphene Growth andAssociated Copper substratee dynamics by in Situ Scanning Electron Microscopy // ACS Nano.–2015.– V. 9.– N. 2.– P. 1506-1519.Ferrighi, L., Datteo, M., Di Valentin, C. Boosting Graphene Reactivity with Oxygen by BoronDoping: Density Functional Theory Modeling of the Reaction Path // The Journal of PhysicalChemistry C.– 2014.– V.
118.– N. 1.– P. 223-230.Sheng, Z.-H., Gao, H.-L., Bao, W.-J., Wang, F.-B., Xia, X.-H. Synthesis of boron doped graphenefor oxygen reduction reaction in fuel cells // J. Mater. Chem.– 2012.– V. 22.– N. 2.– P. 390-395.Yang, L., Jiang, S., Zhao, Y., Zhu, L., Chen, S., Wang, X., Wu, Q., Ma, J., Ma, Y., Hu, Z. Borondoped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction //Angewandte Chemie.– 2011.– V. 50.– N. 31.– P. 7132-7135.Liang, J., Jiao, Y., Jaroniec, M., Qiao, S.Z.
Sulfur and nitrogen dual-doped mesoporous grapheneelectrocatalyst for oxygen reduction with synergistically enhanced performance // AngewandteChemie.– 2012.– V. 51.– N. 46.– P. 11496-11500.Shao, Y., Zhang, S., Engelhard, M.H., Li, G., Shao, G., Wang, Y., Liu, J., Aksay, I.A., Lin, Y.Nitrogen-doped graphene and its electrochemical applications // Journal of MaterialsChemistry.– 2010.– V. 20.– N. 35.– P.
7491.Liu, R., Wu, D., Feng, X., Mullen, K. Nitrogen-doped ordered mesoporous graphitic arrays withhigh electrocatalytic activity for oxygen reduction // Angewandte Chemie.– 2010.– V. 49.– N.14.– P. 2565-2569.Guo, D., Shibuya, R., Akiba, C., Shunsuke, S., Kondo, T., Nakamura, J.
Active sites of nitrogendoped carbon materials for oxygen reduction reaction clarified using model catalysts // Science.–2016.– V. 351.– N. 6271.– P. 361-365.Fazio, G., Ferrighi, L., Di Valentin, C. Boron-doped graphene as active electrocatalyst foroxygen reduction reaction at a fuel-cell cathode // Journal of Catalysis.– 2014.– V. 318.– N. P.203-210.Zhai, D., Wang, H.-H., Lau, K.C., Gao, J., Redfern, P.C., Kang, F., Li, B., Indacochea, E., Das,U., Sun, H.-H., Sun, H.-J., Amine, K., Curtiss, L.A. Raman Evidence for Late StageDisproportionation in a Li–O2 Battery // The Journal of Physical Chemistry Letters.– 2014.– V.5.– N.
15.– P. 2705-2710.Yang, G., Wang, Y., Ma, Y. A Stable, Magnetic, and Metallic Li3O4 Compound as a DischargeProduct in a Li–Air Battery // The Journal of Physical Chemistry Letters.– 2014.– V. 5.– N. 15.–P. 2516-2521.Hartmann, P., Leichtweiss, T., Busche, M.R., Schneider, M., Reich, M., Sann, J., Adelhelm, P.,Janek, J. Degradation of NASICON-Type Materials in Contact with Lithium Metal: Formationof Mixed Conducting Interphases (MCI) on Solid Electrolytes // The Journal of PhysicalChemistry C.– 2013.– V. 117.– N. 41.– P.
21064-21074.Kozmenkova, A.Y., Kataev, E.Y., Belova, A.I., Amati, M., Gregoratti, L., Velasco-Velez, J., KnopGericke, A., Senkovskiy, B., Vyalikh, D., Itkis, D.M., Shao-Horn, Y., Yashina, L.V. Tuning surfacechemistry of TiC electrodes for lithium-air batteries // Chemistry of Materials.– 2016.– V.Submitted.– N. P.Dresselhaus, M.S., Jorio, A., Saito, R. Characterizing Graphene, Graphite, and CarbonNanotubes by Raman Spectroscopy // Annual Review of Condensed Matter Physics.– 2010.– V.1.– N. 1.– P.
89-108.Malard, L.M., Pimenta, M.A., Dresselhaus, G., Dresselhaus, M.S. Raman spectroscopy ingraphene // Physics Reports.– 2009.– V. 473.– N. 5-6.– P. 51-87.Kim, C., Norberg, N.S., Alexander, C.T., Kostecki, R., Cabana, J. Mechanism of PhasePropagation During Lithiation in Carbon-Free Li4Ti5O12Battery Electrodes // AdvancedFunctional Materials.– 2013.– V. 23.– N. 9.– P. 1214-1222.179222.223.224.225.Malik, R., Abdellahi, A., Ceder, G. A Critical Review of the Li Insertion Mechanisms in LiFePO4Electrodes // Journal of the Electrochemical Society.– 2013.– V. 160.– N.
5.– P. A3179-A3197.Tanuma, S., Powell, C.J., Penn, D.R. Calculations of electron inelastic mean free paths. IX. Datafor 41 elemental solids over the 50 eV to 30 keV range // Surface and Interface Analysis.– 2011.–V. 43.– N. 3.– P. 689-713.Penn, D.R. Electron mean-free-path calculations using a model dielectric function // PhysicalReview B.– 1987.– V. 35.– N. 2.– P.
482-486.Jia Liu, M.R., Reza Younesi, Mohammed Dahbi, Kristina Edstroem, Torbjoern GustafssonAccelerated Electrochemical Decomposition of Li2O2 under X-ray illumination // J. Phys. Chem.Lett.– 2013.– V. N. 4.– P. 4045-4050.180.














