Диссертация (1104876), страница 11
Текст из файла (страница 11)
Òåíçîð êîëëåêòèâíîãîñïèíîâîãî íàòÿæåíèÿ - Υαβs (r, t), ñ ó÷¼òîì òåïëîâûõôëóêòóàöèé ñïèíîâ, ïðèíèìàåò âèäΥαβs (r, t)γ~2α β M (r, t)=−Mγ (r, t)∂ ∂ () + Qαβs (r, t).24mµρ(r, t)(5.23)Ñïèíîâàÿ ñèëà äåéñòâóåò íà ïîêîÿùóþñÿ æèäêîñòü â ñëó÷àå íåîäíîðîäíîãî ðàñïðåäåëåíèÿ ñïèíîâ ÷àñòèö â ïðîñòðàíñòâå, ïðè÷¼ì Qαβs - åñòüòåíçîð ñïèíîâûõ òåïëîâûõ ôëóêòóàöèé75Qαβr, t)s (~=XZdRNXδ(r − rj )a2 (R, t)j=1Sρ β α 1X−∇ {∇ (2mρ SZdRNX1 α γ β γ∇ ξ ∇ ξmj j j j j(5.24)δ(r − rj )a2 (R, t)ξjγ ξjγ )}j=1Àíàëîãè÷íî òîìó, êàê áûëî ïîëó÷åíî ìàêðîñêîïè÷åñêîå ðàçëîæåíèåòåíçîðà ïëîòíîñòè ïîòîêà èìïóëüñà, ìàêðîñêîïè÷åñêîå ïðåäñòàâëåíèå òåíçîðà ïëîòíîñòè ïîòîêà ìàãíèòíîãî ìîìåíòà (5.15), ïîñëå ïîäñòàíîâêè âîëíîâîé ôóíêöèè â ÿâíîì âèäå (5.16), ïðèîáðåòàåò âèäαβα βαβ=αβM (r, t) = M υ (r, t) + γs (r, t) + dT (r, t),(5.25)ãäåγsαβ (r, t)=−XZdRNXδ(r − rj )j=1S2µj 2a (R, t)εαµν sµj ∇βj sνjmj ~(5.26)ïðåäñòàâëÿåò ñîáîé ñïèíîâóþ äîáàâêó â óðàâíåíèè äèíàìèêè íàìàãíè÷åííîñòè, ñ êîòîðîé ñâÿçàí âíóòðåííèéñïèíîâûé ìîìåíò âðàùåíèÿ, êîòîðûé,ïîñëå âûäåëåíèÿ òåïëîâûõ ýôôåêòîâ, ïðèîáðåòàåò âèäγsαβ (r, t)~ αγλM λ (r, t)ε Mγ (r, t)∂β () + Θαβ=−s (r, t).2mµρ(r, t)(5.27)αβÏîñëåäíåå ñëàãàåìîå dT â âûðàæåíèè äëÿ ïëîòíîñòè ïîòîêà ìàãíèòβíîãî ìîìåíòà ñâÿçàíî ñ òåïëîâûìè ôëóêòóàöèÿìè ïîòîêîâîé ñêîðîñòè uj èîòðàæàåò äèññèïàòèâíûå ïðîöåññû, ïðîèñõîäÿùèå â ñðåäåNXZXdαβT (r, t) =δ(r − rj )dRSj=12µj 2a (R, t)uβj sαj .~(5.28)Íîâûé òåíçîð (5.27) ïîÿâëÿåòñÿ â âûðàæåíèè äëÿ òåíçîðà ïëîòíîñòèïîòîêà ìàãíèòíîãî ìîìåíòà áëàãîäàðÿ ó÷¼òó âíóòðåííèõ ñïèíîâûõ ýôôåêòîâ, ÿâëÿÿñü îòëè÷íûì îò íóëÿ â ñëó÷àå íåîäíîðîäíîãî ðàñïðåäåëåíèÿ ñïèíîâ â ïðîñòðàíñòâå, à òàê æå â ñëó÷àå äèññèïàòèâíûõ ïðîöåññîâ, ñâÿçàííûõ76ñ òåïëîâûìè ôëóêòóàöèÿìè ñïèíîâ ÷àñòèö ñðåäû, íàëè÷èå êîòîðûõ îòðàæåíî â òåíçîðå ΘαβsΘαβs (r, t)αµν= −εXZSdRNXδ(r − rj )j=12µj 2a (R, t)ξjµ ∇βj ξjνmj ~(5.29)Ñïèíîâûé ìîìåíò âðàùåíèÿ γsαβ (~r, t), ïîÿâèâøèéñÿ â óðàâíåíèè áàëàíñà íàìàãíè÷åííîñòè, ïî ñâîåìó âèäó, íàïîìèíàåò âêëàä îáìåííîé ýíåðãèè êóáè÷åñêîãî èçîòðîïíîãî ôåððîìàãíåòèêà.5.4Êëàññè÷åñêàÿ çàâèõðåííîñòüÄëÿ èññëåäîâàíèÿ âèõðåâûõ ïðîöåññîâ â êâàíòîâîé ñïèíîâîé ïëàçìåíåîáõîäèìî âûâåñòè êâàíòîâî-ãèäðîäèíàìè÷åñêîå óðàâíåíèå âèõðåâîé æèäêîñòè, ó÷èòûâàþùåå êóëîíîâñêèå è ñïèí-ñïèíîâûå âçàèìîäåéñòâèÿ ìåæäóçàðÿäàìè è ñïèíàìè ÷àñòèö ñðåäû.
Ïåðâûì øàãîì â ýòîì íàïðàâëåíèè ÿâëÿåòñÿ ââåäåíèå ìèêðîñêîïè÷åñêîé çàâèõðåííîñòè â îêðåñòíîñòè òî÷êè òðåõìåðíîãî ôèçè÷åñêîãî ïðîñòðàíñòâà r â âèäåΩ (r, t) =αXZSdRNXjεαβγ ˆδ(r − rj )∇jβ (D̂j+γ ψs+ ψs + ψs+ D̂jγ ψs )(R, t). (5.30)2mj ÿâíîì ïðåäñòàâëåíèè âîëíîâîé ôóíêöèè (5.16) ìàêðîñêîïè÷åñêîåâûðàæåíèå êëàññè÷åñêîé çàâèõðåííîñòè ïðèíèìàåò áîëåå ÿâíûé âèä~ r, t) = (∇~ × ~j)(r, t),Ω(5.5(5.31)Óðàâíåíèå áàëàíñà ýíåðãèèÀíàëîãè÷íî òîìó, êàê áûëè ïîëó÷åíû ñïèíîâûå âêëàäû â óðàâíåíèèáàëàíñà èìïóëüñà è íàìàãíè÷åííîñòè, óðàâíåíèå áàëàíñà ýíåðãèè òàê æå77äîëæíî âêëþ÷àòü â ñåáÿ âëèÿíèå êîëëåêòèâíûõ ñïèíîâûõ ýôôåêòîâ.
Ââåäåì ïëîòíîñòü âíóòðåííåé ýíåðãèè ñèñòåìû ÷àñòèö ñ êóëîíîâñêèì è ñïèíñïèíîâûìè âçàèìîäåéñòâèÿìè â âèäå [113]ε(r, t) =ZdRNXδ(r − rj )jZ+dRNXi6=k1~ j2 ψs + (D~ j2 ψs )+ ψs }(R, t){ψs+ D4mj(5.32)1αβδ(r − rj ) ψs+ (R, t){qj qk Tjk − µj µk σjα σkβ Fjk}ψs (R, t).2Äèôôåðåíöèðóÿ âûðàæåíèå (5.32) ïî âðåìåíè, èñïîëüçóÿ èñõîäíîåóðàâíåíèå Ïàóëè-Øðåäèíãåðà ñ ãàìèëüòîíèàíîì (5.2), ïîëó÷èì óðàâíåíèåáàëàíñà ýíåðãèè∂α~ Q(~ r, t) = qjα (r, t)Eextε(r, t) + ∇(r, t)∂t(5.33)αβα+JM(r, t)∂β Bext(r, t) + A(r, t),ãäå A(r, t) - ñêàëÿðíîå ïîëå ïëîòíîñòè ðàáîòû âíóòðåííèõ ñèë, ñîâåðøàåìîéñèñòåìîé ÷àñòèö ñî ñïèíàìè, Q(r, t) - ïëîòíîñòü ïîòîêà âíóòðåííåé ýíåðãèè,âêëþ÷àþùåé ïîòîê êèíåòè÷åñêîé è ïîòåíöèàëüíîé ýíåðãèè ñèñòåìû.
Ïðèýòîì ïëîòíîñòü ïîòîêà âíóòðåííåé ýíåðãèè îêàçûâàåòñÿ ðàâíîéQ(r, t) =ZdRNXjδ(r − rj )1ψs+ Dj D2j ψs + (Dj D2j ψs )+ ψs }(R, t) (5.34)28mj!22+++D+j ψs (R, t)Dj ψs (R, t) + (Dj ψs (R, t)) Dj ψs (R, t)Z+!1αβdRδ(r − rj )ψs+ (R, t)(qj qk Tjk − µ2j σjα σkβ Fjk)Dj ψs (R, t) + k.c.4mjj6=kNX78Ïîñëåäíåå ñëàãàåìîå A(r, t) â óðàâíåíèè áàëàíñà ýíåðãèè (5.33) îáîçíà÷àåò ñêàëÿðíîå ïîëå ïëîòíîñòè ðàáîòû âíóòðåííèõ ñèë, êîòîðàÿ ñêëàäûâàåòñÿ èç ðàáîòû, ñîâåðøàåìîé êóëîíîâñêèì âçàèìîäåéñòâèåì ìåæäó ÷àñòèöàìè Acl (r, t) è ðàáîòû ñïèí-ñïèíîâîãî âçàèìîäåéñòâèÿ As−s (r, t) [92], [113]A(r, t) = As−s (r, t) + Acl (r, t) + As (r, t)As−s (r, t) =XZNXdRs×−δ(r − rj )i6=kµj µk γ αβ(∇j Fjk )×2(5.35)1{(σ̂kα σ̂jβ D̂jγ ψs )+ (R, t)ψs (R, t) + ψs+ (R, t)(σ̂kα σ̂jβ D̂jγ ψs (R, t))mj1{(σ̂jα σ̂kβ D̂jγ ψs )+ (R, t)ψs (R, t) + ψs+ (R, t)(σ̂jα σ̂kβ D̂jγ ψs (R, t))}2mj!+1{(σ̂jα σ̂kβ D̂kγ ψs )+ (R, t)ψs (R, t) + ψs+ (R, t)(σ̂jα σ̂kβ D̂kγ ψs (R, t))}2mkAcl (r, t) =XZdRs×NXi6=k1δ(r − rj ) (qj qk ∇α Tjk )×41{D̂j+α ψs+ (R, t)ψs (R, t) + ψs+ (R, t)D̂jα ψs (R, t)}mj1{D̂j+α ψs+ (R, t)ψ(R, t) + ψs+ (R, t)D̂jα ψs (R, t)}}2mj!1−{D̂k+α ψs+ (R, t)ψ(R, t) + ψs+ (R, t)D̂kα ψs (R, t)}2mk+Ðàáîòà, êîòîðàÿ ïîÿâëÿåòñÿ áåç âêëàäà îïåðàòîðîâAs (r, t) =XZsdRNXδ(r − rj )i6=k79µj µk γ αβ µβν(∇j Fjk )ε ×2(5.36)!2µ2µj µ +k µBext ψs (R, t)σ̂jν σ̂kα ψs (R, t) +Bext ψs+ (R, t)σ̂jα σ̂kν ψs (R, t)×~~−XZdRs××~X 2µi µji6=kδ(r − rj )i6=kX 2µi µki6=kNX~µj µk γ αβ ηαν(∇j Fjk )ε ×2µη +Fjkψs (R, t)(σiµ σjβ σkν + σjβ σkν σiµ )ψs (R, t)µη +Fjkψs (R, t)(σiµ σjν σkβ + σjν σkβ σiµ )ψs (R, t).Ïîñëå âûäåëåíèÿ ïîëÿ ñêîðîñòåé è ïîëÿ ñïèíîâ, áëàãîäàðÿ ïîäñòàíîâêè âîëíîâîé ôóíêöèè â ÿâíîì âèäå (5.16) â îïðåäåëåíèå ïëîòíîñòè ïîòîêàýíåðãèè (5.34) è ïëîòíîñòè ðàáîòû, à òàê æå ó÷èòûâàÿ ìàêðîñêîïè÷åñêîåðàçëîæåíèå òåíçîðà ïëîòíîñòè ïîòîêà èìïóëüñà (5.19) è ïëîòíîñòè ïîòîêàìàãíèòíîãî ìîìåíòà (5.27), ïîëó÷åííûå â ïðåäûäóùåì ðàçäåëå, óðàâíåíèåáàëàíñà ýíåðãèè (5.33) ïðèìåò âèä∂~2~ρ( + v∇)(r, t) + ∇~q(r, t) +{∂α ρ(r, t)}{∂ β ρ(r, t)}∂β υ α (r, t) (5.37)∂t4mρ(r, t)−γ~2~2β M (r, t)∂α ∂ β ρ(r, t)∂β υ α (r, t) −M(r,t)∂∂()∂β υ α (r, t)γα24m4mµρ(r, t)α+Qαβs (r, t)∇β υ (r, t)~2+ p (r, t)∂β υα (r, t) −∂α (ρ(r, t)∂α ∂ β υ β (r, t))4mαβα= dαβT (r, t)∂β Bext (r, t) −~ αµνM ν (r, t)αε Mµ (r, t)∂β ()∇β Bext(r, t)2mµρ(r, t)α+∇β Bext(r, t)Θαβs (r, t) + ℵ(r, t).ãäå80Qαβr, t)s (~=XZdRNXδ(r − rj )a2 (R, t)j=1Sρ β α 1X−∇ {∇ (2mρ SZdRNX1 α γ β γ∇ ξ ∇ ξmj j j j j(5.38)δ(r − rj )a2 (R, t)ξjγ ξjγ )}j=1èdαβT (r, t)=XZSdRNXδ(r − rj )j=12µj 2a (R, t)uβj sαj .~(5.39)Ó÷èòûâàåòñÿ, ÷òî ïëîòíîñòü ýíåðãèè ñîñòîèò èç ïëîòíîñòè êèíåòè÷åñêîé è ïëîòíîñòè óäåëüíîé ýíåðãèè [113]mv2 (r, t)+ ρ(r, t)(r, t).(5.40)ε(r, t) = ρ(r, t)2Óðàâíåíèå (5.37), çàìêíóòîå âûðàæåíèÿìè (5.38) è (5.39), ïðåäñòàâëÿåò ñîáîé îáîáùåííîå óðàâíåíèå áàëàíñà âíóòðåííåé ýíåðãèè, ó÷èòûâàþùååâëèÿíèå ïëîòíîñòè ñïèíà ÷àñòèö.
Òðåòüå, ÷åòâåðòîå è âîñüìîå ñëàãàåìûåâ ëåâîé ÷àñòè óðàâíåíèÿ (5.37) îòðàæàþò âëèÿíèå íà ýíåðãèþ êâàíòîâîãîäàâëåíèÿ èëè êâàíòîâîãî ïîòåíöèàëà Áîìà, à ñåäüìîå ñëàãàåìîå - òåíçîðàêèíåòè÷åñêîãî äàâëåíèÿ. Ïÿòîå ñëàãàåìîå â ëåâîé ÷àñòè îòðàæàåò âëèÿíèåñïèíîâîãî íàòÿæåíèÿ (5.23). Âòîðîå ñëàãàåìîå â ïðàâîé ÷àñòè óðàâíåíèÿ(5.37) ñâÿçàíî ñ äåéñòâèåì íà ýíåðãèþ ñïèíîâîãî óãëîâîãî ìîìåíòà (5.27),îòëè÷íîãî îò íóëÿ äàæå â îòñóòñòâèè ìàãíèòíûõ ïîëåé, íî åñëè ñðåäíèéñïèí ÷àñòèö ðàñïðåäåëåí íåîäíîðîäíî.
Âëèÿíèå òåïëîâûõ ôëóêòóàöèé ñïèíà è ñêîðîñòåé ÷àñòèö õàðàêòåðèçóåòñÿ íàëè÷èåì øåñòîãî ñëàãàåìîãî â ëåâîé ÷àñòè, à òàê æå ïåðâîãî è òðåòüåãî ñëàãàåìûõ â ïðàâîé ÷àñòè óðàâíåíèÿ.Ïëîòíîñòü óäåëüíîé ýíåðãèè ρ ñèñòåìû âçàèìîäåéñòâóþùèõ ôåðìèîíîâ äîëæíà áûòü ïðåäñòàâëåíà â ôîðìåρ(r, t) =ZdRNXjmj u2j~2 4j a12δ(r − rj )a (R, t)−+|∇α sαj |222mj a2mj81!(5.41)q2+2Z1dr T (r, r )ρ2 (r, r , t) −2000Zdr F αβ (r, r )M αβ (r, r , t)000êàê âèäíî èç âûðàæåíèÿ (5.41), óäåëüíàÿ âíóòðåííÿÿ ýíåðãèÿ âêëþ÷àåò âñåáÿ êèíåòè÷åñêóþ ýíåðãèþ òåïëîâûõ ôëóêòóàöèé ÷àñòèö (ïåðâîå ñëàãàåìîå), âòîðîå ñëàãàåìîå, ïðîïîðöèîíàëüíîå êâàäðàòó ïîñòîÿííîé Ïëàíêà,âûòåêàåò èç êâàíòîâîãî ïîòåíöèàëà Áîìà, êàê ðåçóëüòàò äåéñòâèÿ êâàíòîâîãî äàâëåíèÿ, òðåòüå ñëàãàåìîå â âûðàæåíèè (5.41) ñâÿçàíî ñ âíóòðåííèìèñâîéñòâàìè ñèñòåìû ôåðìèîíîâ è îòðàæàåò âêëàä â ýíåðãèþ âíóòðåííåãîñïèíîâoãî ïîòåíöèàëà, ñóùåñòâîâàíèå êîòîðîãî âûòåêàåò èç íåîäíîðîäíîãîðàñïðåäåëåíèÿ ñïèíîâ ÷àñòèö â ïðîñòðàíñòâå.
Ïëîòíîñòü óäåëüíîé ýíåðãèèâêëþ÷àåò â ñåáÿ òàêæå ïëîòíîñòü ïîòåíöèàëüíîé ýíåðãèè êóëîíîâñêîãî èñïèí-ñïèíîâîãî âçàèìîäåéñòâèÿ ìåæäó ÷àñòèöàìè.Ïëîòíîñòü ïîòîêà òåïëîâîé êèíåòè÷åñêîé ýíåðãèè q α ïðèîáðåòàåò îáîáù¼ííûé âèäq α (r, t) =ZdRNX"δ(r − rj )a2 (R, t) uαjjmj u2j~2 4j a1−+|∇α sαj |222mj a2mj!(5.42)2−5.622~ ∂ ujβujβ α~∂∂ ln a(ujβ∂ sjγ ∂ β sγj)−+αββ2mj ∂xj4mj ∂xαj ∂xjmj∂xj#Ïðèáëèæåíèè ñàìîñîãëàñîâàííîãî ïîëÿÝëåêòðè÷åñêèå è ìàãíèòíûå âçàèìîäåéñòâèÿ, ïðèâîäÿùèå ê èçìåíåíèÿì êâàíòîâûõ ñîñòîÿíèé ÷àñòèö, ïðåäñòàâëÿþòñÿ â âèäå ñóïåðïîçèöèèâçàèìîäåéñòâèé ÷åðåç êîëëåêòèâíîå ñàìîñîãëàñîâàííîå ïîëå è íåïîñðåäñòâåííûõ êîððåëÿöèé ìåæäó ÷àñòèöàìè. Äâóõ÷àñòè÷íûå ôóíêöèè, ïîÿâëÿþùèåñÿ â óðàâíåíèÿõ êâàíòîâîé ãèäðîäèíàìèêè, à èìåííî, äâóõ÷àñòè÷íàÿïëîòíîñòü âåðîÿòíîñòè è äâóõ÷àñòè÷íàÿ íàìàãíè÷åííîñòü, ïîÿâëÿþùàÿñÿçà ñ÷¼ò âçàèìîäåéñòâèÿ ñîáñòâåííûõ ìàãíèòíûõ ìîìåíòîâ ìîãóò áûòü çàïè82ñàíû â âèäå [113]ρ2 (r, r , t) =0ZdRXδ(r − rj )δ(r − rk )(ψ + ψ)(R, t)0(5.43)jk= ρ(r, t)ρ(r , t) + η(r, r , t),0Mαβ(r, r , t) =0ZdRX0δ(r − rj )δ(r − rk )µ2 ψS+ (σjα σkβ )ψ(R, t)0(5.44)jk= M α (r, t)M β (r , t) + µαβ (r, r , t),00Ïåðâûå ñëàãàåìûå â ðàçëîæåíèÿõ äâóõ÷àñòè÷íûõ ôóíêöèé ïðåäñòàâëÿþò âçàèìîäåéñòâèå â ñðåäå ÷åðåç ñàìîñîãëàñîâàííîå ïîëå, â òî âðåìÿ,êàê âòîðûå ñëàãàåìûå õàðàêòåðèçóþò âçàèìîäåéñòâèå ÷åðåç êîððåëÿöèè,ãäå η(r, r , t), µαβ (r, r , t) - êîððåëÿöèîííûå ôóíêöèè.














