Об отношении совместимости в исчислении Ламбека и в его варианте с операциями замещения (1104173), страница 18
Текст из файла (страница 18)
P. 230255. (Lecture Notes inComputer Science, Vol. 4800).[10] A. Foret. Conjoinability and unication in Lambek categorial grammars// New Perspectives in Logic and Formal Lingusitics, Vth RomaWorkshop, 2001, Proceedings / Editors V.M. Abrusci and C. Casadio. Roma: Bulzoni, 2002.[11] A.
Foret. On the computation of joins for non-associative Lambekcategorial grammars // 17th international workshop on unication,UNIF 2003, Proceedings / Editors J. Levy, M. Kohlhase, J. Niehren andM. Villaret. Valencia: Universidad Politechnica de Valencia, 2003. Vol. 3. P. 2538.[12] J.-Y. Girard. Linear Logic // Theoretical Computer Science.
1987. Vol. 50, No. 1. P. 1102.[13] A. Joshi, Y. Schabes. Tree-adjoining grammars // Handbook of formallanguages. / Editors G. Rozenberg and A. Salomaa Berlin: Springer,1997. Vol. 3: Beyond Words. P. 69123.[14] M. Kanazawa. The Lambek calculus enriched with additional connectives // Journal of Logic, Language and Information. 1992. Vol. 1. P.
141171.117[15] M. Kanazawa. The pumping lemma for well-nested multiple contextfree languages // Proceedings of 13th International ConferenceDevelopments in Language Theory, DLT 2009 / Editors V. Diekert andD. Nowotka. Berlin: Springer, 2009. P. 312325. (Lecture Notesin Computer Science, Vol. 5583).[16] M. Kracht. The mathematics of language. Berlin: Mouton de Gruyter,2003.[17] S. Kuznetsov. Lambek grammars with one division and one primitivetype // Logic Journal of the IGPL. 2012 Vol.
20, No. 1 P.207221.[18] J. Lambek. The mathematics of sentence structure // American Mathe-matical Monthly. 1958 Vol. 65, No. 3. P. 154170.Ðóññêèé ïåðåâîä: È. Ëàìáåê. Ìàòåìàòè÷åñêîå èññëåäîâàíèå ñòðóêòóðû ïðåäëîæåíèé // Ìàòåìàòè÷åñêàÿ ëèíãâèñòèêà: ñáîðíèê ïåðåâîäîâ / Ïîä ðåä. Þ. À. Øðåéäåðà è äð. Ì.: Ìèð, 1964. Ñ. 4768.[19] J. Lambek.
Deductive systems and categories II: Standard constructionsand closed categories // Category Theory, Homology Theory and TheirApplications I / Editor P. Hilton. Berlin: Springer, 1969. P. 76122. (Lecture Notes in Mathematics, Vol. 86).[20] M. Moortgat, M. Pentus. Type similarity for the Lambek-Grishincalculus // Proceedings of 12th Conference on Formal Grammar,Dublin, 2007. P. 7585.[21] G. Morrill, J. M. Merenciano. Generalizing discontinuity // Traitementautomatique des langues. 1996. Vol. 37, No. 2. P.
119143.[22] G. Morrill. Categorial grammar: logical syntax, semantics and pro-cessing. Oxford: Oxford University Press, 2011.[23] G. Morrill, O. Valentn. On calculus of displacement // Proceedingsof the 10th International Workshop on Tree Adjoining Grammars andRelated Formalisms, New Haven, 2010. P. 4552.118[24] G. Morrill, O. Valentn, M. Fadda. The displacement calculus // Journalof Logic, Language and Information. 2011. Vol. 20, No. 1. P. 148.[25] A. Okhotin.
Conjunctive grammars // Journal of Automata, Languagesand Combinatorics. 2011. Vol. 6, No. 4. P. 519535.[26] A. Okhotin. Boolean grammars // Information and Computation. 2004. Vol. 194, No. 1. P. 1948.[27] M. Pentus. Equivalent types in Lambek calculus and linear logic // Ñå-ðèÿ ìàòåìàòè÷åñêàÿ ëîãèêà è òåîðåòè÷åñêàÿ èíôîðìàòèêà, 2(ïðåïðèíò). Ìàòåìàòè÷åñêèé èíñòèòóò èì.
Â. À. Ñòåêëîâà ÐÀÍ,îòäåë ìàòåìàòè÷åñêîé ëîãèêè. Ì., 1992. 21 ñ.[28] M. Pentus. Free monoid completeness of the Lambek calculus allowingempty premises // Proceedings of Logic Colloquium '96, / Editors J. M.Larrazabal, D. Lascar and G. Mints. Berlin etc.: Springer, 1998. P.171209. (Lecture Notes in Logic, Vol. 12).[29] C. Pollard.
Generalized Phrase Structure Grammars, Head Grammars,and Natural Languages : Ph.D. thesis. Stanford University, Stanford,1984.[30] D. Roorda. Resource logic: proof theoretical investigations : Ph.D. thesis Universiteit van Amsterdam, Amsterdam, 1991.[31] H. Seki, T. Matsumura, M. Fujii, and T. Kasami. On multiple contextfree grammars // Theoretical Computer Science.
1991. Vol. 88, 2. P. 191229.[32] O. Valentn. Theory of discontinuous Lambek calculus : PhD Thesis. Universitat Autonoma de Barcelona, Barcelona, 2012.[33] J. van Benthem. Language in Action: Categories, Lambdas and DynamicLogic. Amsterdam: North-Holland, 1991. 350 p. (Studies in Logicand the Foundations of Mathematics; vol. 130).[34] D. N. Yetter.
Quantales and noncommutative linear logic // Journal ofSymbolic Logic. 1990. Vol. 55, No. 1. P. 4164.119[35] Ì. Ð. Ïåíòóñ. Èñ÷èñëåíèå Ëàìáåêà è ôîðìàëüíûå ãðàììàòèêè //Ôóíäàìåíòàëüíàÿ è ïðèêëàäíàÿ ìàòåìàòèêà. 1995. Òîì 1, 3. Ñ. 729751.[36] Ì.
Ð. Ïåíòóñ. Ïîëíîòà ñèíòàêñè÷åñêîãî èñ÷èñëåíèÿ Ëàìáåêà. //Ôóíäàìåíòàëüíàÿ è ïðèêëàäíàÿ ìàòåìàòèêà. 1995. Òîì 5, 1. Ñ. 193219.[37] À. Í. Ñàôèóëëèí. Âûâîäèìîñòü äîïóñòèìûõ ïðàâèë ñ ïðîñòûìè ïîñûëêàìè â èñ÷èñëåíèè Ëàìáåêà // Âåñòíèê Ìîñêîâñêîãî óíèâåðñè-òåòà. Ñåðèÿ 1.
Ìàòåìàòèêà, ìåõàíèêà. 2007. 4. Ñ. 7377.Ðàáîòû àâòîðà ïî òåìå äèññåðòàöèè[38] À. À. Ñîðîêèí. Î äëèíå ñîâìåùàþùåãî òèïà â èñ÷èñëåíèè Ëàìáåêà // Âåñòíèê Ìîñêîâñêîãî óíèâåðñèòåòà. Ñåðèÿ 1. Ìàòåìàòèêà,ìåõàíèêà. 2011. 3. Ñ. 1014.[39] A. Sorokin. Lower and upper bounds for the length of joins in theLambek calculus // Proceedings of 8th Computer Science Symposium inRussia, CSR 2013 / Editors A.
Bulatov and A. Shur. Berlin: Springer,2013. P. 150161. (Lecture Notes in Computer Science, Vol. 7913).[40] A. Sorokin. On the generative power of discontinuous Lambek calculus// Proceedings of 17th and 18th International Conferences, FG 2012,FG 2013 / Editors G. Morrill and M.-J. Nederhof. Berlin: Springer,2013. P. 250262. (Lecture Notes in Computer Science, Vol. 8036).[41] A. Sorokin. Conjoinability relation in 1-discontinuous Lambek calculus// Categories and Types in Logic, Language, and Physics / EditorsC. Casadio, B. Coecke, M. Moortgat and P. Scott. Berlin: Springer,2013.
P. 392401. (Lecture Notes in Computer Science, Vol. 8222).120.















