Автореферат (1104132), страница 6
Текст из файла (страница 6)
2008.Tishin A.M., Rochev J.A., Gorelov A.V. Magnetic carrier and medical preparation forcontrollable delivery and release of active substances, a method of production and method oftreatment using thereof: pat. DE 112006004066 USA. 2009.Thiele J.-U., Maat S., Fullerton E.E. FeRh/FePt exchange spring films for thermally assistedmagnetic recording media // Appl. Phys. Lett.
2003. Vol. 82, № 17. P. 2859–2861.Pecharsky V.K., Gschneidner J. K.A. Giant Magnetocaloric Effect in Gd5Si2Ge2 // Phys. Rev.Lett. 1997. Vol. 78, № 23. P. 4494–4497.Fujieda S., Fujita A., Fukamichi K. Large magnetocaloric effect in La(FexSi1−x)13 itinerantelectron metamagnetic compounds // Appl. Phys. Lett. 2002. Vol. 81, № 7. P. 1276–1278.Tegus O. et al.
Transition-metal-based magnetic refrigerants for room-temperature applications// Nature. 2002. Vol. 415, № 6868. P. 150–152.1915.16.17.18.19.20.21.22.23.24.25.26.27.28.29.30.31.32.Nikitin S.A. et al. The magnetocaloric effect in Fe49Rh51 compound // Phys. Lett. Sect. Gen.At. Solid State Phys.
1990. Vol. 148, № 6–7. P. 363–366.Annaorazov M.P. et al. Alloys of the Fe-Rh system as a new class of working material formagnetic refrigerators // Cryogenics. 1992. Vol. 32, № 10. P. 867–872.Nikitin S.A. et al. Giant anomalies of the Young’s modulus and internal friction of FeRh alloyabove the AFM-FM transition point // Phys. Lett. A. 1993. Vol. 176, № 3–4. P. 275–278.Nikitin S.A. et al. Giant elastocaloric effect in FeRh alloy // Phys. Lett.
A. 1992. Vol. 171, №3–4. P. 234–236.Franco V. et al. The Magnetocaloric Effect and Magnetic Refrigeration Near RoomTemperature: Materials and Models // Annu. Rev. Mater. Res. 2012. Vol. 42, № 1. P. 305–342.Nishimura K. et al. Magnetocaloric Effect of Fe(Rh1−xPdx) Alloys // Mater.
Trans. 2008. Vol.49, № 8. P. 1753–1756.Manekar M., Roy S.B. Very large refrigerant capacity at room temperature with reproduciblemagnetocaloric effect in Fe0.975 Ni0.025 Rh // J. Phys. Appl. Phys. 2011. Vol. 44, № 24. P.242001.Barua R., Jiménez-Villacorta F., Lewis L.H. Towards tailoring the magnetocaloric response inFeRh-based ternary compounds // J. Appl. Phys. 2014.
Vol. 115, № 17. P. 17A903.Gyorffy B.L. et al. A first-principles theory of ferromagnetic phase transitions in metals // J.Phys. F Met. Phys. 1985. Vol. 15, № 6. P. 1337.Garcia-Sanchez F. et al. Multiscale models of hard-soft composite media // J. Magn. Magn.Mater. 2006. Vol. 303, № 2. P. 282–286.Ovsyannikov S.V. et al. Charge-ordering transition in iron oxide Fe4O5 involving competingdimer and trimer formation // Nat. Chem.
2016. Vol. 8, № 5. P. 501–508.Kozlenko D.P. et al. Sequential Cobalt Magnetization Collapse in ErCo2: Beyond the Limits ofItinerant Electron Metamagnetism // Sci. Rep. 2015. Vol. 5. P. 8620.Kozlenko D.P. et al. Sequential Cobalt Magnetization Collapse in ErCo2: Beyond the Limits ofItinerant Electron Metamagnetism // Sci. Rep. 2015. Vol.
5. P. 8620.Kouvel J.S. Unusual Nature of the Abrupt Magnetic Transition in FeRh and Its PseudobinaryVariants // J. Appl. Phys. 1966. Vol. 37, № 3. P. 1257–1258.Zakharov A.I. et al. // Sov. Phys. JETP. 1964. Vol. 19. P. 1348.Muldawer L., deBergevin F. Antiferromagnetic‐Ferromagnetic Transformation in FeRh // J.Chem. Phys. 1961.
Vol. 35, № 5. P. 1904–1905.Kren E., Pal L., Szabo P. Neutron diffraction investigation of the antiferromagneticferromagnetic transformation in the FeRh alloy // Phys. Lett. 1964. Vol. 9, № 4. P. 297–298.Kamantsev A.P. et al. Properties of metamagnetic alloy Fe48Rh52 in high magnetic fields //Bull. Russ.
Acad. Sci. Phys. 2015. Vol. 79, № 9. P. 1086–1088.20.















