Диссертация (1104114), страница 16
Текст из файла (страница 16)
³¤¥¬ ±·¨² ²¼, ·²® ¯¥°¢»¥ k ³° ¢¥¨© ¯¥°¢®© ±¨±²¥¬» ±®®²¢¥²±²¢³¾² ®°²®£® «¼®±²¨ y0 ¯®¤¯°®±²° ±²¢³ x0, ¯¥°¢»¥ k³° ¢¥¨© ¢²®°®© ±¨±²¥¬» { ®°²®£® «¼®±²¨ yr ¯®¤¯°®±²° ±²¢³ xr .®ª § ²¥«¼±²¢®.84°®¬¥ ²®£®, ¬®¦® ±·¨² ²¼, ·²® ¯¥°¢»¥ lr ³° ¢¥¨© ®¡¥¨µ ±¨±²¥¬ ±®¢¯ ¤ ¾² (¨ ±®®²¢¥²±²¢³¾² ®°²®£® «¼®±²¨ ®¡®¨µ ¯®¤¯°®±²° ±²¢ y0,yr ¯®¤¯°®±²° ±²¢³ x0 \ xr ). ¡º¥¤¨¨¬ ¤¢¥ ¤ »¥ ±¨±²¥¬» ³° ¢¥¨©.°®±²° ±²¢® °¥¸¥¨© ®¢®© ±¨±²¥¬» (¨§ 2(n k) lr ³° ¢¥¨©) ¥±²¼¯¥°¥±¥·¥¨¥ y0 ¨ yr .
± ¨²¥°¥±³¥² ¢¥°®¿²®±²¼ ²®£®, ·²® ¥£® ° §¬¥°®±²¼ ° ¢ lr 1. ·¥¢¨¤®, ½² ¢¥°®¿²®±²¼ ®¯°¥¤¥«¿¥²±¿ § ·¥¨¿¬¨ n,k ¨ r, ® ¥ § ¢¨±¨² ®² ¢»¡®° ª®ª°¥²®£® xr . ¬ ¥ ²°¥¡³¥²±¿ § ·¥¨¥ ¤ ®© ¢¥°®¿²®±²¨. ¦® «¨¸¼, ·²® ®® ®¤®§ ·® ®¯°¥¤¥«¿¥²±¿®¬¥°®¬ r (¯°¨ ¤ ®¬ n) ¨ ¥ § ¢¨±¨² ®² ¢»¡®° xr 2 Ar . 2 ª®·¨¬ ¤®ª § ²¥«¼±²¢® ³²¢¥°¦¤¥¨¿ 6. ±±¬®²°¨¬ ¬®¦¥±²¢® X r¶¥¯®·¥ª ¯®¤¯°®±²° ±²¢ (4.13) ¤«¨» r. ®£« ±® «¥¬¬¥ 17 ¢±¥ ² ª¨¥ ¶¥¯®·ª¨ § ¨±ª«¾·¥¨¥¬ ½ª±¯®¥¶¨ «¼® ¬ «®© ¤®«¨ ¿¢«¿¾²±¿ ¯° ¢¨«¼»¬¨, § ·¨², r¨µ ¯° ¢»¥ ª®¶» «¥¦ ² ¢ Ar .
«¥¥, ¯® «¥¬¬¥ 16 ¯®jX j ¶¥¯®·¥ª ¨¬¥¾² ¯° ¢»¥ ª®¶», ¯°®±²»¥ ®²®±¨²¥«¼ª° ©¥© ¬¥°¥ poly(n)® z (². ¥. ¨µ ±«®¦®±²¼®²®±¨²¥«¼® z ¥ ¯°¥¢®±µ®¤¨² D). ·¨² ¥rjjX¬¥¥¥ ·¥¬ poly(n) ¶¥¯®·¥ª ®¤®¢°¥¬¥® ¿¢«¿¾²±¿ ¯° ¢¨«¼»¬¨ ¨ ¨¬¥¾² ¯° ¢»© ª®¥¶ ±«®¦®±²¨ ¥ ¡®«¥¥ D ®²®±¨²¥«¼® z . ® ¢ ±¨«³ ®¤®°®¤®±²¨ («¥¬¬ 18) ¢±¥ ¯®¤¯°®±²° ±²¢ ¨§ Ar ¿¢«¿¾²±¿ ¯° ¢»¬¨ª®¶ ¬¨ ®¤¨ ª®¢®£®·¨±« ¯° ¢¨«¼»µ ¶¥¯®·¥ª.
«¥¤®¢ ²¥«¼®, ¥ ¬¥rjjA¥¥ ·¥¬ poly(n) ½«¥¬¥²®¢ ¬®¦¥±²¢ Ar ¨¬¥¾² ±«®¦®±²¼ ¥ ¡®«¼¸¥ D®²®±¨²¥«¼® z .»¡¥°¥¬ ¬¨¨¬ «¼®¥ r, ¤«¿ ª®²®°®£® lr = 0. ®£¤ Ar ±®±²®¨² ¨§¢±¥µ k-¬¥°»µ ¯®¤¯°®±²° ±²¢, ¨¬¥¾¹¨µ ³«¥¢®¥ ¯¥°¥±¥·¥¨¥ ± x. ½²®¬ ±«³· ¥ ¢±¥ k-¬¥°»¥ ¯®¤¯°®±²° ±²¢ ¨§ Vn ª°®¬¥ ½ª±¯®¥¶¨ «¼® ¬ «®© ¤®«¨ «¥¦ ² ¢ Ar . ¥©±²¢¨²¥«¼®, ¯®¤¯°®±²° ±²¢® x ¢ Vn § ¤ ¥²±¿ ±¨±²¥¬®© (m k) «¨¥©»µ ³° ¢¥¨©. »¡¥°¥¬ ±«³· ©® ¥¹¥(m k) «¨¥©® ¥§ ¢¨±¨¬»µ ³° ¢¥¨© (§ ¤ ¾¹¨µ ¥ª®²®°®¥ k-¬¥°®¥¯®¤¯°®±²° ±²¢® ¢ Vn).
¡º¥¤¨¨¬ ¤¢¥ ¤ »¥ ±¨±²¥¬» ³° ¢¥¨©. ®¢ ¿ ±¨±²¥¬ ±®¤¥°¦¨² 2(m k) ³° ¢¥¨©. ®±ª®«¼ª³ 2k < m, ± ½ª±¯®¥¶¨ «¼® ¡«¨§ª®© ª 1 ¢¥°®¿²®±²¼¾ ° £ ¤ ®© ±¨±²¥¬» ° ¢¥ m(±³¡«¥¬¬ 1), ¨ ® ¥ ¨¬¥¥² ¥²°¨¢¨ «¼»µ °¥¸¥¨©. ²® § ·¨², ·²®±«³· ©® ¢»¡° ®¥ ¯®¤¯°®±²° ±²¢® ¢ Vn ± ½ª±¯®¥¶¨ «¼® ¡«¨§ª®© ª1 ¢¥°®¿²®±²¼¾ ¨¬¥¥² ³«¥¢®¥ ¯¥°¥±¥·¥¨¥ ± x.² ª, Ar ±®¤¥°¦¨² ¢±¥ k-¬¥°»¥ ¯®¤¯°®±²° ±²¢ ¨§ Vn ª°®¬¥ ½ª±¯®¥¶¨ «¼® ¬ «®© ¤®«¨. » § ¥¬, ·²® ¥ ¬¥¥¥ ·¥¬ ¯®«¨®¬¨ «¼ ¿¤®«¿ ¢±¥µ ¯®¤¯°®±²° ±²¢ ¨§ Ar ¨¬¥¥² ±«®¦®±²¼ ¥ ¡®«¥¥ Dn ®²®±¨²¥«¼® z . «¥¤®¢ ²¥«¼®, ¨ ±°¥¤¨ ¢±¥µ k-¬¥°»µ ¯®¤¯°®±²° ±²¢ Vn ¯®85ª° ©¥© ¬¥°¥ ¯®«¨®¬¨ «¼ ¿ ¤®«¿ ¨¬¥¥² ±«®¦®±²¼ ¥ ¡®«¥¥ D ®²®±¨²¥«¼® z . ª¨¬ ®¡° §®¬, ¥±«¨ Qn { ·¨±«® ¢±¥µ k-¬¥°»µ ¯®¤¯°®±²° ±²¢¢ Vn, ²®Qn :2D poly(n) ¯®¬¨¬, ·²® K (x) = log Qn + O(log n). «¥¥, D = K (xjz )+ O(log n) =K (x) K (z ) + O(log n).
«¥¤®¢ ²¥«¼®,K (x) K (z ) K (x) O(log n): ª¨¬ ®¡° §®¬, K (z ) = O(log n). 286¨²¥° ²³° [1] ¢®ª¨ .., ¥¢¨ .. «®¦®±²¼ ª®¥·»µ ®¡º¥ª²®¢ ¨ ®¡®±®¢ ¨¥ ¯®¿²¨© ¨´®°¬ ¶¨¨ ¨ ±«³· ©®±²¨ ± ¯®¬®¹¼¾ ²¥®°¨¨ «£®°¨²¬®¢. // . 1970. . 25, Â6, . 85-127.[2] ®«¬®£®°®¢ .. °¨ ¯®¤µ®¤ ª ®¯°¥¤¥«¥¨¾ ¯®¿²¨¿ Àª®«¨·¥±²¢®¨´®°¬ ¶¨¨Á. // °®¡«¥¬» ¯¥°¥¤ ·¨ ¨´®°¬ ¶¨¨, 1965. . 1, Â1,.
3-11.[3] ®«¬®£®°®¢ .. «®£¨·¥±ª¨¬ ®±®¢ ¬ ²¥®°¨¨ ¨´®°¬ ¶¨¨ ¨ ²¥®°¨¨ ¢¥°®¿²®±²¥©. // °®¡«¥¬» ¯¥°¥¤ ·¨ ¨´®°¬ ¶¨¨. 1969. . 5,Â3, . 3-7.[4] ®«¬®£®°®¢ .. ®¬¡¨ ²®°»¥ ®±®¢ ¨¿ ²¥®°¨¨ ¨´®°¨ ¶¨¨ ¨¨±·¨±«¥¨¿ ¢¥°®¿²®±²¥©. // . 1983. . 38, Â4, . 27-36.[5] ³·¨ª .. ¢»¤¥«¥¨¨ ®¡¹¥© ¨´®°¬ ¶¨¨ ¤¢³µ ±«®¢. // ¥§.¤®ª«. ¥°¢®£® ±¥¬¨°®£® ®£°¥±± ¡¹-¢ ¬ ²¥¬. ±² ²¨±². ¨ ²¥®°¨¨ ¢¥°®¿²®±²¥© ¨¬. ¥°³««¨. .: ³ª . 1986.
. 453.[6] ¨± ° ., ¥°¥° . ¥®°¨¿ ¨´®°¬ ¶¨¨. ¥®°¥¬» ª®¤¨°®¢ ¨¿ ¤«¿¤¨±ª°¥²»µ ±¨±²¥¬ ¡¥§ ¯ ¬¿²¨. // .: ¨°. 1985.[7] ¥´¨«¤ ¦. ²¥¯¥¨ ¥° §°¥¸¨¬®±²¨. // .: ³ª . 1977.[8] ¨°¿¥¢ .. ¥°®¿²®±²¼. // .: ³ª . 1989.[9] Gacs P., Korner J. Common Information is Far Less Then MutualInformation. // Probl. of Control and Inform. Theory. 1973. V. 2, Â2,P.
149-162.[10] Hammer D., Shen A. A Strange Application of Kolmogorov Complexity.// Theory of Computing Systems. 1998. V. 31, P. 1-4.[11] Hammer D. Complexity inequalities. Wissenschaft & Technik Verlag,Berlin, ISBN 3{89685{479{8, 1998. 143 pp.87[12] Ingleton A.W. Representation of matroids. In: Welsh D.J.A., editor.Combinatorial Mathematics and its applications. Academic Press (London), 1971. P. 149-167.[13] Muchnik An.A. On Common Information. // Theoretical ComputerScience. 1998. V. 207, P. 319-328[14] Uspensky V.A., Shen A.
Relations between varieties of Kolmogorov complexities. // Mathematical system theory. 1996. V. 29, Â3, P. 271-292.[15] Muchnik An.A., Shen A., Romashchenko A., Vereshchagin N.K. Uppersemi-lattice of binary strings with the relation x is simple conditional toy. // Preprint DIMACS TR 97-74, Rutgers University, 1997[16] Hammer D., Romashchenko A., Shen A., Vereshchagin N.
Inequalitiesfor Shannon Entropy and Kolmogorov Complexity. // Journal of Computer and System Sciences. 2000. V. 60, P. 442-464.[17] ®¬ ¹¥ª® . . °» ±«®¢ ± ¥¬ ²¥°¨ «¨§³¥¬®© ®¡¹¥© ¨´®°¬ ¶¨¥©. °®¡«¥¬» ¯¥°¥¤ ·¨ ¨´®°¬ ¶¨¨. 2000. . 36, »¯. 1, . 3-20.[18] ®¬ ¹¥ª® . .
®«³°¥¸¥²ª ¯®±«¥¤®¢ ²¥«¼®±²¨ ±«®¢ ± ®²®¸¥¨¥¬ ³±«®¢®© ¯°®±²®²». // ¥±²¨ª ®±ª®¢±ª®£® ¨¢¥°±¨²¥² ,2000. °¨¿²® ¢ ¯¥· ²¼.88.















