Диссертация (1104034), страница 13
Текст из файла (страница 13)
Ìàòåìàòè÷åñêèå çàìåòêè, 91(3):331346, 2012.[2] Ã.Ê. Äæàïàðèäçå. Ìîäàëüíî-ëîãè÷åñêèå ñðåäñòâà èññëåäîâàíèÿ äîêàçóåìîñòè. Äèññ. êàíä. ôèëîñ. íàóê, Ìîñêâà, ÌÃÓ, 1986.[3] Þ.Ë. Åðøîâ, È.À. Ëàâðîâ, À.Ä. Òàéìàíîâ è Ì.À. Òàéöëèí. Ýëåìåíòàðíûå òåîðèè. Óñïåõè ìàòåìàòè÷åñêèõ íàóê, 20, 4(124):37108,1965.[4] Þ.Ë. Åðøîâ. Ïðîáëåìû ðàçðåøèìîñòè è êîíñòðóêòèâíûå ìîäåëè.Íàóêà, 1980.[5] È.À. Ëàâðîâ. Ýôôåêòèâíàÿ íåîòäåëèìîñòü ìíîæåñòâà òîæäåñòâåííî èñòèííûõ è ìíîæåñòâà êîíå÷íî îïðîâåðæèìûõ ôîðìóë íåêîòîðûõ òåîðèé.
Àëãåáðà è Ëîãèêà Ñåìèíàð, 2(1):518, 1963.[6] J. Barwise.Admissible Sets and Structures.Perspectives inmathematical logic. Springer, 1975.[7] Lev D. Beklemishev. Provability algebras and proof-theoretic ordinals,I. Annals of Pure and Applied Logic, 128:103123, 2004.[8] Lev D. Beklemishev. Veblen hierarchy in the context of provabilityalgebras. In Logic, Methodology and Philosophy of Science, Proceedingsof the Twelfth International Congress., pages 6578.
Kings CollegePublications, 2005.[9] Lev D. Beklemishev, Joost J. Joosten, and Marco Vervoort. A nitarytreatment of the closed fragment of Japaridze's provability logic. J. Log.Comput., 15(4):447463, 2005.80[10] Lev D. Beklemishev, David Fernandez-Duque, and Joost J. Joosten.On provability logics with linearly ordered modalities. Studia Logica,102(3):541566, 2014.[11] P. Blackburn, M. de Rijke, and Y. Venema.Modal Logic: Graph.Darst. Cambridge Tracts in Theoretical Computer Science. CambridgeUniversity Press, 2002.[12] Felix Bou and Joost J.
Joosten. The closed fragment of IL is PSPACEhard. Electronic Notes in Theoretical Computer Science, 278:4754,2011.[13] Laurent Braud. Covering of ordinals. In FSTTCS, pages 97108, 2009.[14] J.R. Buchi.Weak second-order arithmetic and nite automata.Mathematical Logic Quarterly, 6(1-6):6692, 1960.[15] Alexander V. Chagrov and Mikhail N.
Rybakov. How many variablesdoes one need to prove pspace-hardness of modal logics? In Advancesin Modal Logic 4 (AiML'02. Citeseer, 2003.[16] Stephen A. Cook and Robert A. Reckhow. Time bounded random accessmachines. J. Comput. Syst. Sci., 7(4):354375, August 1973.[17] Andrzej Ehrenfeucht. An application of games to the completenessproblem for formalized theories. Fundamenta Mathematicae, 49:129141, 1961.[18] C.C. Elgot and M.O. Rabin.Decidability and undecidability ofextensions of second (rst) order theory of (generalized) successor.
J.Symb. Log., 31:169181, 1966.[19] Gerhard Gentzen. Die Widerspruchsfreiheit der reinen Zahlentheorie.Mathematische Annalen, 112:493565, 1936.[20] Kurt Godel. Eine Interpretation des intuitionistischen Aussagenkalkuls.Ergebnisse eines mathematischen Kolloquiums, 4: 3940, 1933. Englishtranslation, with an introductory note by A.S.
Troelstra. Kurt Godel,Collected Works, 1:296303, 1986.81[21] W. Hodges.Model Theory.Encyclopedia of Mathematics and itsApplications. Cambridge University Press, 1993.[22] K.N. Ignatiev. On strong provability predicates and the associatedmodal logics. The Journal of symbolic logic, 58(1):249290, 1993. eng.[23] Joost J. Joosten. Interpretability formalized. Ph.D thesis, UtrechtUniversity, 2004.[24] Richard E. Ladner. The computational complexity of provability insystems of modal propositional logic.SIAM journal on computing,6(3):467480, 1977.[25] Martin Hugo Lob. Solution of a problem of Leon Henkin.
The Journalof Symbolic Logic, 20(02):115118, 1955.[26] Ilya Shapirovsky. PSPACE-decidability of Japaridze's polymodal logic.In Advances in Modal Logic, pages 289304, 2008.[27] Robert M. Solovay. Provability interpretations of modal logic. Israeljournal of mathematics, 25(3-4):287304, 1976.[28] L. J. Stockmeyer and A. R.
Meyer. Word problems requiring exponentialtime(preliminary report). In Proceedings of the Fifth Annual ACMSymposium on Theory of Computing, STOC '73, pages 19, New York,NY, USA, 1973. ACM.[29] A. Tarski and A. Mostowski. Arithmetical classes and types of wellordered systems. Bull.
Amer. Math. Soc., 55:65, 1949.[30] A. Tarski, A. Mostowski, and R.M. Robinson. Undecidable Theories.Studies in logic and the foundations of mathematics. North-Holland,1953.Ðàáîòû àâòîðà ïî òåìå äèññåðòàöèè[31] Ô.Í. Ïàõîìîâ. Íåðàçðåøèìîñòü ýëåìåíòàðíîé òåîðèè ïîëóðåøåòêèGLP-ñëîâ. Ìàòåìàòè÷åñêèé ñáîðíèê, 203(8):141160, 2012.[32] Ô.Í. Ïàõîìîâ. Îá ýëåìåíòàðíûõ òåîðèÿõ ñèñòåì îðäèíàëüíûõ îáîçíà÷åíèé íà îñíîâå ñõåì ðåôëåêñèè. Òðóäû Ìàòåìàòè÷åñêîãî èí-ñòèòóòà èì.
Â.À. Ñòåêëîâà, 289:206226, 2015.82[33] Fedor Pakhomov.On the complexity of the closed fragment ofJaparidze's provability logic. Archive for Mathematical Logic, 53(78):949967, 2014.83.














