Диссертация (1103954), страница 33
Текст из файла (страница 33)
Структура агрегатов, образуемых ЛПС, а также конформационная подвижность ЛПС в составесистем с различной геометрией, может быть смоделирована при помощи построенных МДмоделей. Полученные в работе модели ЛПС-мембран и ЛПС-агрегатов могут быть использованы для моделирования их взаимодействия с различными антимикробными агентами, атакже для анализа роли различных составляющих частей молекулы ЛПС как в формировании структуры агрегатов, так и в устойчивости соответствующих бактериальных штаммов.Благодарности.Авторвыражаетблагодарностьсвоемунаучномуруководителю,А.Б. Рубину, за постановку задач и внимание к работе.
Автор горячо благодарит ДмитрияЗленко и Алексея Нестеренко за поддержку и помощь в работе и в подготовке диссертации,а также коллектив кафедры биофизики за создание благоприятной атмосферы для научныхисследований.Литература[1] Angus, D. C. Epidemiology of severe sepsis in the United States: analysis of incidence,outcome, and associated costs of care / D. C. Angus, W. T. Linde-Zwirble, J. Lidicker,et al. // Crit. Care Med. — 2001. — Vol. 29.
— P. 1303–1310.[2] Cohen, J. The immunopathogenesis of sepsis / J. Cohen // Nature. — 2002. — Vol. 420,no. 6917. — P. 885–891.[3] Corinne, A. Epidemiology of sepsis and infection in ICU patients from an internationalmulticentre cohort study / A. Corinne, C. Brun-Buisson, H. Burchardi, et al. // IntensiveCare Med.
— 2002. — Vol. 28, no. 2. — P. 108–121.[4] Morganti, R. P. Mechanisms underlying the inhibitory effects of lipopolysaccharide on humanplatelet adhesion / R. P. Morganti, M. H. M. Cardoso, F. G. Pereira, et al. // Platelets. —2010. — Vol. 21. — P. 260–269.[5] Zhang, G. Lipopolysaccharide stimulates platelet secretion and potentiates platelet aggregation via TLR4/MyD88 and the cGMP-dependent protein kinase pathway / G. Zhang,J. Han, E.
J. Welch, et al. // J. Immunol. — 2009. — Vol. 182, no. 12. — P. 7997–8004.[6] Esmon, C. T. The interactions between inflammation and coagulation / C. T. Esmon // Br.J. Haematol. — 2005. — Vol. 131, no. 4. — P. 417–430.[7] Mooberry, M. J. Procoagulant microparticles promote coagulation in a factor XI-dependentmanner in human endotoxemia / M. J. Mooberry, R. Bradford, E. L. Hobl, et al. // J.Thromb. Haemost. — 2016. — Vol. 14, no. 5. — P. 1031–1042.[8] Атауллаханов, Ф.
И. Пространственные аспекты динамики свертывания крови. I. Гипотеза / Ф. И. Атауллаханов, Г. Т. Гурия // Биофизика. — 1994. — Т. 39, № 1. —С. 89–95.169170[9] Guria, K. Spatial aspects of blood coagulation: Two decades of research on the self-sustainedtraveling wave of thrombin / K. Guria, G. Guria // Thromb. Res. — 2015. — Vol. 135,no. 3. — P. 423–433.[10] Panteleev, M. A. Hemostasis and thrombosis beyond biochemistry: Roles of geometry, flowand diffusion / M. A. Panteleev, N. M.
Dashkevich, F. I. Ataullakhanov // Thromb. Res.— 2015. — Vol. 136, no. 4. — P. 699–711.[11] Mann, K. G. Is there value in kineticmodeling of thrombin generation? Yes / K. G. Mann //J. Thromb. Haemost. — 2012. — Vol. 10, no. 8. — P. 1463–1469.[12] Hemker, H. C. Is there value inkineticmodeling of thrombin generation? No (unless.
. . ) /H. C. Hemker, S. Kerdelo, R. M. W. Kremers // J. Thromb. Haemost. — 2012. — Vol. 10,no. 8. — P. 1470–1477.[13] Ataullakhanov, F. I. Mathematical modeling and computer simulation in blood coagulation /F. I. Ataullakhanov, M.
A. Panteleev // Pathophysiol. Haemost. Thromb. — 2005. —Vol. 34. — P. 60–70.[14] Maas, C. Regulatory mechanisms of the plasma contact system / C. Maas, T. Renné //Thromb. Res. — 2012. — Vol. 129, no. SUPPL. 2. — P. S73–S76.[15] Frick, I.-M. The dual role of the contact system in bacterial disease / I.-M. Frick, L. Bjork,H. Herwald // Thromb. Haemost. — 2007. — Vol. 98, no. 2. — P. 497–502.[16] Nickel, K.
F. Crosstalk of the plasma contact system with bacteria / K. F. Nickel,T. Renné // Thromb. Res. — 2012. — Vol. 130, no. SUPPL.1. — P. S78–S83.[17] Morrison, D. Direct evidence for Hageman factor (factor XII) activation by bacteriallipopolysaccharides (endotoxins) / D. Morrison, C. Cochrane // J. Exp.
Med. — 1974. —Vol. 140. — P. 797–811.[18] Kalter, E. S. Activation of purified human plasma prekallikrein triggered by cell wall fractionsof Escherichia coli and Staphylococcus aureus / E. S. Kalter, W. C. van Dijk, A. Timmerman,et al. // J. Infect. Dis. — 1983. — Vol. 148, no. 4.
— P. 682–691.[19] Mueller, M. Aggregates are the biologically active units of endotoxin / M. Mueller, B. Lindner, S. Kusumoto, et al. // J. Biol. Chem. — 2004. — Vol. 279, no. 25. — P. 26307–26313.171[20] Bello, G. Characterization of the aggregates formed by various bacterial lipopolysaccharidesin solution and upon interaction with antimicrobial peptides / G.
Bello, J. Eriksson, A. Terry,et al. // Langmuir. — 2015. — Vol. 31, no. 2. — P. 741–751.[21] Sasaki, H. Aggregation behavior of an ultra-pure lipopolysaccharide that stimulates TLR-4receptors / H. Sasaki, S. H. White // Biophys. J. — 2008. — Vol. 95, no.
July. —P. 986–993.[22] Rietschel, E. T. Bacterial endotoxin: molecular relationships of structure to activity andfunction / E. T. Rietschel, T. Kirikae, F. U. Schade, et al. // FASEB J. — 1994. — Vol. 8.— P. 217–225.[23] Zgurskaya, H. I. Permeability barrier of Gram-negative cell envelopes and approaches tobypass it / H. I. Zgurskaya, C. A.
Lopez, S. Gnanakaran // ACS Infect. Dis. — 2015. —Vol. 1, no. 11. — P. 512–522.[24] Murray, G. L. Altering the length of the lipopolysaccharide O antigen has an impact on theinteraction of Salmonella enterica serovar typhimurium with macrophages and complement /G. L. Murray, S. R. Attridge, R. Morona // J. Bacteriol. — 2006.
— Vol. 188, no. 7. —P. 2735–2739.[25] Wu, E. L. Molecular dynamics and NMR spectroscopy studies of E. coli lipopolysaccharidestructure and dynamics / E. L. Wu, O. Engström, S. Jo, et al. // Biophys. J. — 2013. —Vol. 105, no. 6. — P. 1444–1455.[26] Wu, E. L. E.
coli outer membrane and interactions with OmpLA / E. L. Wu, P. J. Fleming,M. S. Yeom, et al. // Biophys. J. — 2014. — Vol. 106, no. 11. — P. 2493–2502.[27] Patel, D. S. Dynamics and interactions of OmpF and LPS: Influence on pore accessibilityand ion permeability / D. S. Patel, S. Re, E. L. Wu, et al. // Biophys. J. — 2016. — Vol.110, no.
4. — P. 930–938.[28] Kuttel, M. Comparative simulation of pneumococcal serogroup 19 polysaccharide repeating units with two carbohydrate force fields / M. Kuttel, M. Gordon, N. Ravenscroft //Carbohydr. Res. — 2014. — Vol. 390. — P. 20–27.[29] Clement, M.-J. Conformational studies of the O-specific polysaccharide of Shigella flexneri5a and of four related synthetic pentasaccharide fragments using NMR and molecular mod-172elling / M.-J. Clement, A. Imberty, A.
Phalipon, et al. // J. Biol. Chem. — 2003. — Vol.278, no. 48. — P. 47928–47936.[30] Kang, Y. Conformational diversity of O-antigen polysaccharides of the Gram-negative bacterium Shigella flexneri serotype Y / Y. Kang, S. Barbirz, R. Lipowsky, M.
Santer // J.Phys. Chem. B. — 2014. — Vol. 118. — P. 2523–2534.[31] Blasco, P. Conformational dynamics of the lipopolysaccharide from Escherichia coli O91revealed by NMR spectroscopy and molecular simulations / P. Blasco, D. S. Patel, O. Engstrom, et al. // Biochemistry. — 2017. — Vol. 56, no. 29. — P. 3826–3839.[32] Galochkina, T. Conformational dynamics of the single lipopolysaccharide O-antigen in solution / T. Galochkina, D. Zlenko, A. Nesterenko, et al. // ChemPhysChem. — 2016. —Vol. 17, no. 18. — P. 2839–53.[33] Davie, E. W.
Waterfall sequence for intrinsic blood clotting / E. W. Davie, O. D. Ratnoff //Science. — 1964. — Vol. 145. — P. 1310–1312.[34] McFarlane, R. G. The basis of the cascade hypothesis of blood clotting / R. G. McFarlane //Thrombos. Diathes. Haemorrh. — 1966. — Vol. 15. — P. 591–602.[35] McFarlane, R. G. An enzyme cascade in the blood clotting mechanism, and its function asa biochemical amplifier / R. G. McFarlane // Nature.
— 1964. — Vol. 202, no. 498-499.[36] Sperling, C. Blood coagulation on biomaterials requires the combination of distinct activation processes / C. Sperling, M. Fischer, M. F. Maitz, C. Werner // Biomaterials. — 2009.— Vol. 30. — P. 4447–4456.[37] Атауллаханов, Ф. И. Пространственные аспекты динамики свертывания крови. II. Феномелогическая модель / Ф. И. Атауллаханов, Г. Т.
Гурия, А. Ю. Сафрошкина //Биофизика. — 1994. — Т. 39, № 1. — С. 97–106.[38] Атауллаханов, Ф. И. Пространственные аспекты динамики свертывания крови. III. Росттромба in vitro / Ф. И. Атауллаханов, Р. И. Волкова, Г. Т. Гурия, В.
И. Сарбаш //Биофизика. — 1995. — Т. 40, № 6. — С. 1320–1328.[39] Ataullakhanov, F. I. Spatiotemporal dynamics of clotting and pattern formation in humanblood / F. I. Ataullakhanov, G. T. Guria, V. I. Sarbash, R. I. Volkova // Biochim. Biophys.Acta. — 1998. — Vol. 1425, no. 3. — P. 453–468.173[40] Ovanesov, M. V. Initiation and propagation of coagulation from tissue factor-bearing cellmonolayers to plasma: initiator cells do not regulate spatial growth rate / M. V.
Ovanesov,N. M. Ananyeva, M. A. Panteleev, et al. // J. Thromb. Haemost. — 2005. — Vol. 3. —P. 321–331.[41] Ovanesov, M. V. Hemophilia A and B are associated with abnormal spatial dynamics of clotgrowth / M. V. Ovanesov, J. V. Krasotkina, L. I. Ul’yanova, et al. // Biochim. Biophys.Acta — General Subjectsmica et Biophysica Acta - General Subjects.
— 2002. — Vol.1572, no. 1. — P. 45–57.[42] Ovanesov, M. V. Effect of factor VIII on tissue factor-initiated spatial clot growth /M. V. Ovanesov, E. G. Lopatina, E. L. Saenko, et al. // Thromb. Haemost. — 2003.— Vol. 2. — P. 235–242.[43] Tokarev, A. Spatial dynamics of contact-activated fibrin clot formation in vitro and in silicoin haemophilia B: effects of severity and ahemphil B treatment / A. Tokarev, Yu.
Krasotkina,M. Ovanesov, et al. // Math. Model. Nat. Phenom. — 2006. — Vol. 1, no. 2. — P. 124–137.[44] Dashkevich, N. M. Thrombin activity propagates in space during blood coagulation as anexcitation wave / N. M. Dashkevich, M. V. Ovanesov, A. N. Balandina, et al. // Biophys.J. — 2012. — Vol. 103, no. 10.
— P. 2233–2240.[45] Kastrup, Ch. J. Characterization of the threshold response of initiation of blood clotting tostimulus patch size / Ch. J. Kastrup, F. Shen, M. K. Runyon, R. F. Ismagilov // Biophys.J. — 2007. — Vol. 93, no. 8. — P. 2969–2977.[46] Runyon, M.
K. Propagation of blood clotting in the complex biochemical network ofhemostasis is described by a simple mechanism / M. K. Runyon, B. L. Johnson-Kerner,Ch. J. Kastrup, et al. // J. Am. Chem. Soc. — 2007. — Vol. 129, no. 22. — P. 7014–7015.[47] Runyon, M. K. Effects of shear rate on propagation of blood clotting determined usingmicrofluidics and numerical simulations / M. K. Runyon, Ch.















