Диссертация (1103763), страница 16
Текст из файла (страница 16)
12, -pp. 2574–2591[51] Nicklas R. B., Lee G. M., Rieder C. L., Rupp G. Mechanically cut mitotic spindles: cleancuts and stable microtubules // J. Cell Sci., -1989, -vol. 94(3), -pp. 415–423[52] Molodtsov M. I., Ermakova E. A., Shnol E. E., Grishchuk E. L., McIntosh J. R.,Ataullakhanov F. I. A molecular-mechanical model of the microtubule // Biophys. J., 2005, -vol. 88, -no. 5, -pp. 3167–3179[53] Dimitrov A., Quesnoit M., Moutel S., Cantaloube I., Pous C., Perez F. Detection of GTPTubulin Conformation in Vivo Reveals a Role for GTP Remnants in Microtubule Rescues// Science, -2008, -vol.
322, -no. 5906, -pp. 1353–1356[54] O’Brien E. T., Voter W. A., Erickson H. P. GTP hydrolysis during microtubule assembly100//Biochemistry (Mosc.), -1987, -vol. 26, -no. 13, -pp. 4148–4156[55] Stewart R. J., Farrell K. W., Wilson L. Role of GTP hydrolysis in microtubulepolymerization: evidence for a coupled hydrolysis mechanism // Biochemistry (Mosc.), 1990, -vol. 29, -no. 27, -pp. 6489–6498[56] Voter W. A., O’Brien E. T., Erickson H.
P. Dilution-induced disassembly of microtubules:relation to dynamic instability and the GTP cap // Cell Motil. Cytoskeleton, -1991, -vol.18, -no. 1, -pp. 55–62[57] Maurer S. P., Fourniol F. J., Bohner G., Moores C. A., Surrey T. EBs recognize anucleotide-dependent structural cap at growing microtubule ends // Cell, - 2012, -vol. 149,-no. 2, -pp. 371–382[58] Bieling P., Laan L., Schek H., Munteanu E. L., Sandblad L., Dogterom M., Brunner D.,Surrey T. Reconstitution of a microtubule plus-end tracking system in vitro // Nature, 2007, -vol. 450, -no.
7172, -pp. 1100–1105[59] Walker R. A., Pryer N. K., Salmon E. D. Dilution of individual microtubules observed inreal time in vitro: evidence that cap size is small and independent of elongation rate // J.Cell Biol., -1991, -vol. 114, -no. 1, -pp. 73–81[60] Hill T. L., Chen Y. Phase changes at the end of a microtubule with a GTP cap // Proc.Natl. Acad. Sci. U. S.
A., 1984, -vol. 81, -no. 18, -pp. 5772–5776[61] Drechsel D. N., Kirschner M. W. The minimum GTP cap required to stabilizemicrotubules // Curr. Biol. CB, - 1994, -vol. 4, -no. 12, -pp. 1053–1061[62] Caplow M., Shanks J. Evidence that a single monolayer tubulin-GTP cap is both necessaryand sufficient to stabilize microtubules // Mol. Biol. Cell, - 1996, -vol. 7, -no. 4, -pp.
663–675[63] Carlier M. F., Pantaloni D. Kinetic analysis of guanosine 5’-triphosphate hydrolysisassociated with tubulin polymerization // Biochemistry (Mosc.), -1981, -vol. 20, -no. 7, pp. 1918–1924[64] Melki R., Fievez S., Carlier M. F. Continuous monitoring of Pi release followingnucleotide hydrolysis in actin or tubulin assembly using 2-amino-6-mercapto-7methylpurine ribonucleoside and purine-nucleoside phosphorylase as an enzyme-linkedassay // Biochemistry (Mosc.), - 1996, -vol. 35, -no. 37, -pp. 12038–12045[65] Vandecandelaere A., Brune M., Webb M. R., Martin S. R., Bayley P.
M. Phosphaterelease during microtubule assembly: what stabilizes growing microtubules? //Biochemistry (Mosc.), -1999, -vol. 38, -no. 25, -pp. 8179–8188[66] Zanic M., Stear J. H., Hyman A. A., Howard J. EB1 Recognizes the Nucleotide State ofTubulin in the Microtubule Lattice // PLoS ONE, -2009, -vol. 4, -no. 10, -p. e7585101[67] Maurer S. P., Bieling P., Cope J., Hoenger A., Surrey T. GTPgammaS microtubulesmimic the growing microtubule end structure recognized by end-binding proteins (EBs) //Proc.
Natl. Acad. Sci. U. S. A., - 2011, -vol. 108, -no. 10, -pp. 3988–3993[68] Maurer S. P., Cade N. I., Bohner G., Gustafsson N., Boutant E., Surrey T. EB1Accelerates Two Conformational Transitions Important for Microtubule Maturation andDynamics // Curr.
Biol., -2014, -vol. 24, -no. 4, -pp. 372–384[69] Kerssemakers J. W. J., Munteanu E. L., Laan L., Noetzel T. L., Janson M. E., DogteromM. Assembly dynamics of microtubules at molecular resolution // Nature, - 2006, -vol.442, -no. 7103, -pp. 709–712[70] Schek H. T., Gardner M. K., Cheng J., Odde D. J., Hunt A. J. Microtubule assemblydynamics at the nanoscale // Curr. Biol. CB, -2007, -vol. 17, -no.
17, -pp. 1445–1455[71] Seetapun D., Castle B. T., McIntyre A. J., Tran P. T., Odde D. J. Estimating themicrotubule GTP cap size in vivo // Curr. Biol. CB, -2012, -vol. 22, -no. 18, -pp. 1681–1687[72] Mandelkow E. M., Mandelkow E. Unstained microtubules studied by cryo-electronmicroscopy. Substructure, supertwist and disassembly // J. Mol. Biol., -1985, -vol. 181, no. 1, -pp. 123–135[73] Mandelkow E. M., Lange G., Jagla A., Spann U., Mandelkow E. Dynamics of themicrotubule oscillator: role of nucleotides and tubulin-MAP interactions // EMBO J., 1988, -vol. 7, -no. 2, -pp. 357–365[74] Mandelkow E. M., Mandelkow E., Milligan R.
A. Microtubule dynamics and microtubulecaps: a time-resolved cryo-electron microscopy study // J. Cell Biol., - 1991, -vol. 114, no. 5, -pp. 977–991[75] Wade R. H., D. Chrétien Cryoelectron microscopy of microtubules // J. Struct. Biol., 1993, -vol. 110, -no.
1, -pp. 1–27[76] Margolin G., Gregoretti I. V., Cickovski T. M., Li C., Shi W., Alber M. S., Goodson H. V.The mechanisms of microtubule catastrophe and rescue: implications from analysis of adimer-scale computational model // Mol. Biol. Cell, -2012, -vol.
23, -no. 4, -pp. 642–656[77] Chen Y. D., Hill T. L. Monte Carlo study of the GTP cap in a five-start helix model of amicrotubule // Proc. Natl. Acad. Sci. U. S. A., - 1985, -vol. 82, -no. 4, -pp. 1131–1135,[78] Bayley P., Schilstra M., Martin S. A lateral cap model of microtubule dynamic instability// FEBS Lett., - 1989, -vol.
259, -no. 1, -pp. 181–184[79] Bayley P. M., Schilstra M. J., Martin S. R. Microtubule dynamic instability: numericalsimulation of microtubule transition properties using a Lateral Cap model // J. Cell Sci., 1990, -vol. 95 (1), -pp. 33–48102[80] Martin S. R., Schilstra M. J., Bayley P. M. Opposite-end behaviour of dynamicmicrotubules // Biochim. Biophys. Acta, -1991, -vol. 1073, -no. 3, -pp. 555–561[81] Martin S. R., Schilstra M. J., Bayley P. M.
Dynamic instability of microtubules: MonteCarlo simulation and application to different types of microtubule lattice // Biophys. J., 1993, -vol. 65, -no. 2, -pp. 578–596[82] Efremov A., Grishchuk E. L., McIntosh J. R., Ataullakhanov F. I. In search of an optimalring to couple microtubule depolymerization to processive chromosome motions // Proc.Natl. Acad. Sci. U. S. A., -2007, -vol.
104, -no. 48, -pp. 19017–19022[83] Flyvbjerg H., Holy T., Leibler S. Stochastic dynamics of microtubules: A model for capsand catastrophes // Phys. Rev. Lett., -1994, -vol. 73, -no. 17, -pp. 2372–2375[84] Molodtsov M. I., Grishchuk E. L., Efremov A. K., McIntosh J. R., Ataullakhanov F. I.Force production by depolymerizing microtubules: a theoretical study // Proc. Natl. Acad.Sci.
U. S. A., -2005, -vol. 102, -no. 12, -pp. 4353–4358[85] Sept D., MacKintosh F. C. Microtubule Elasticity: Connecting All-Atom Simulations withContinuum Mechanics // Phys. Rev. Lett., -2010, -vol. 104, -no. 1[86] Sept D., Baker N. A., McCammon J. A. The physical basis of microtubule structure andstability // Protein Sci., -2009, -vol. 12, -no. 10, -pp. 2257–2261[87] VanBuren V., Odde D. J., Cassimeris L. Estimates of lateral and longitudinal bondenergies within the microtubule lattice // Proc.
Natl. Acad. Sci. U. S. A., -2002, -vol. 99, no. 9, -pp. 6035–6040[88] VanBuren V., Cassimeris L., Odde D. J. Mechanochemical model of microtubule structureand self-assembly kinetics // Biophys. J., -2005, -vol. 89, -no. 5, -pp. 2911–2926[89] Gregoretti I. V., Margolin G., Alber M.
S., Goodson H. V. Insights into cytoskeletalbehavior from computational modeling of dynamic microtubules in a cell-likeenvironment // J. Cell Sci., -2006, -vol. 119, -no. 22, -pp. 4781–4788[90] Brun L., Rupp B., Ward J. J., Nedelec F. A theory of microtubule catastrophes and theirregulation // Proc. Natl. Acad. Sci.,-2009, -vol.
106, -no. 50, -pp. 21173–21178[91] Ranjith P., Lacoste D., Mallick K., Joanny J.-F. Nonequilibrium self-assembly of afilament coupled to ATP/GTP hydrolysis // Biophys. J., -2009, -vol. 96, -no. 6, -pp. 2146–2159[92] Piette B., Liu J., Peeters K., Smertenko A., Hawkins T., Deeks M., Quinlan R.,Zakrzewski W.
J., Hussey P. J. A Thermodynamic Model of Microtubule Assembly andDisassembly // PLoS ONE, -2009, -vol. 4, -no. 8, -p. e6378[93] Castle B. T., Odde D. J. Brownian Dynamics of Subunit Addition-Loss Kinetics andThermodynamics in Linear Polymer Self-Assembly // Biophys. J., -2013, -vol. 105, -no.10311, -pp.
2528–2540[94] Padinhateeri R., Kolomeisky A. B., Lacoste D. Random hydrolysis controls the dynamicinstability of microtubules // Biophys. J., -2012, -vol. 102, -no. 6, -pp. 1274–1283[95] Margolin G., Gregoretti I. V., Goodson H. V., Alber M. S. Analysis of a mesoscopicstochastic model of microtubule dynamic instability // Phys. Rev. E Stat. Nonlin. SoftMatter Phys., -2006, -vol.
74, -no. 4 (1), -p. 41920[96] Hinow P., Rezania V., Tuszyński J. A. Continuous model for microtubule dynamics withcatastrophe, rescue, and nucleation processes // Phys. Rev. E Stat. Nonlin. Soft MatterPhys., -vol. 80, -no. 3 (1), -p. 31904[97] Mazilu I., Zamora G., Gonzalez J. A stochastic model for microtubule length dynamics //Phys. Stat. Mech. Its Appl., -2010, -vol. 389, -no. 3, -pp. 419–427[98] Chrétien D., Fuller S.















