Диссертация (1103577), страница 19
Текст из файла (страница 19)
104. Lau, J. T., Föhlisch, A., Martins, M., Nietubyc, R., Reif, M., & Wurth, W. Spin and orbital magnetic moments of deposited small iron clusters studied by x-ray magnetic circular dichroism spectroscopy //New Journal of Physics. – 2002. – Т. 4. – №. 1. – С. 98.
105. Morales M. A., Passamani E. C., Baggio-Saitovitch E. 57 Fe diluted in a Ag film prepared by vapor quenching: Nanostructure formation and magnetic behavior //Physical Review B. – 2002. – Т. 66. – №. 14. – С. 144422.
106. Montano P. A., Barrett P. H., Shanfield Z. The magnetic hyperfine interaction of iron monomers and dimers isolated in an argon matrix //The Journal of Chemical Physics. – 1976. – Т. 64. – №. 7. – С. 2896-2900.
107. Guenzburger D., Saitovitch E. M. B. Fe dimers: A theoretical study of the hyperfine interactions //Physical Review B. – 1981. – Т. 24. – №. 5. – С. 2368.
108. Guo G. Y., Ebert H. First-principles study of the magnetic hyperfine field in Fe and Co multilayers //Physical Review B. – 1996. – Т. 53. – №. 5. – С. 2492.
109. Nogueira R. N., Petrilli H. M. Theoretical study of hyperfine and local magnetic properties of Co and Fe clusters in fcc Ag hosts //Physical Review B. – 1999. – Т. 60. – №. 6. – С. 4120.
110. Castro M., Salahub D. R. Theoretical study of the structure and binding of iron clusters: Fe n (n≤ 5) //Physical Review B. – 1993. – Т. 47. – №. 16. – С. 10955.
111. Domracheva N. E. et al. Stepwise magnetic behavior of the liquid crystal iron (III) complex //Journal of Structural Chemistry. – 2013. – Т. 54. – №. 1. – С. 16-27.
112. А.В. Соболев and И.А. Пресняков. Магнетизм и основы мессбауэровской спектроскопии.Часть I. Природа эффекта Мессбауэра. Электрические сверхтонкие взаимодействия. Учебное пособие. Отдел печати Химического факультета МГУ Отдел печати Химического факультета МГУ, 2011.
113. Marcus H. L., Fine M. E., Schwartz L. H. Mössbauer‐Effect Study of Solid‐Solution and Precipitated Fe‐Rich Fe‐Mo Alloys //Journal of Applied Physics. – 1967. – Т. 38. – №. 12. – С. 4750-4758.
114. Cehovin A., Canali C. M., MacDonald A. H. Orbital and spin contributions to the g tensors in metal nanoparticles //Physical Review B. – 2004. – Т. 69. – №. 4. – С. 045411.
115. Andres H. et al. Planar Three-Coordinate High-Spin FeII Complexes with Large Orbital Angular Momentum: Mössbauer, Electron Paramagnetic Resonance, and Electronic Structure Studies //Journal of the American Chemical Society. – 2002. – Т. 124. – №. 12. – С. 3012-3025.
116. Scullane M. I., White L. K., Chasteen N. D. An efficient approach to computer simulation of EPR spectra of high-spin Fe (III) in rhombic ligand fields //Journal of Magnetic Resonance (1969). – 1982. – Т. 47. – №. 3. – С. 383-397.
117. Bou-Abdallah F., Chasteen N. D. Spin concentration measurements of high-spin (g′= 4.3) rhombic iron (III) ions in biological samples: theory and application //JBIC Journal of Biological Inorganic Chemistry. – 2008. – Т. 13. – №. 1. – С. 15-24.
118. Castner Jr T. et al. Note on the paramagnetic resonance of iron in glass //The Journal of Chemical Physics. – 1960. – Т. 32. – №. 3. – С. 668-673.
119. Peisach J., Blumberg W. E., Adler A. ELECTRON PARAMAGNETIC RESONANCE STUDIES OF IRON PORPHIN AND CHLORIN SYSTEMS* //Annals of the New York Academy of Sciences. – 1973. – Т. 206. – №. 1. – С. 310-327.
120. Lang G. et al. Paramagnetic Mössbauer Spectra of Some Rhombic Fe3+ Materials: Correlation with ESR //The Journal of Chemical Physics. – 1971. – Т. 55. – №. 9. – С. 4539-4548.
121. Hall P. L., Angel B. R., Jones J. P. E. Dependence of spin Hamiltonian parameters E and D on labeling of magnetic axes: application to ESR of high-spin Fe 3+ //Journal of Magnetic Resonance (1969). – 1974. – Т. 15. – №. 1. – С. 64-68.
122. Bencini A. et al. ESR spectra of low-symmetry high-spin cobalt (II) complexes. 2. Pseudotetrahedral dichlorobis (triphenylphosphine oxide) cobalt (II) //Inorganic Chemistry. – 1979. – Т. 18. – №. 8. – С. 2137-2140.
123. Ukrainczyk L. et al. ESR study of cobalt (II) tetrakis (N-methyl-4-pyridiniumyl) porphyrin and cobalt (II) tetrasulfophthalocyanine intercalated in layered aluminosilicates and a layered double hydroxide //The Journal of Physical Chemistry. – 1994. – Т. 98. – №. 10. – С. 2668-2676.
124. Gütlich P., Goodwin H. A. Spin crossover—an overall perspective //Spin Crossover in Transition Metal Compounds I. – Springer Berlin Heidelberg, 2004. – С. 1-47.
125. Gatteschi D., Sessoli R. Quantum tunneling of magnetization and related phenomena in molecular materials //Angewandte Chemie International Edition. – 2003. – Т. 42. – №. 3. – С. 268-297.
126. Попов Л. Д., Левченков С. И. МОЛЕКУЛЯРНЫЕ МАГНЕТИКИ: ЭКСПЕРИМЕНТАЛЬНО-ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ДИЗАЙНА МАГНИТНЫХ МАТЕРИАЛОВ БУДУЩЕГО. – 2011.
127. Mironov V. S. New approaches to the problem of high-temperature single-molecule magnets //Doklady Physical Chemistry. – MAIK Nauka/Interperiodica, 2006. – Т. 408. – №. 1. – С. 130-136.
128. Mironov V. S., Chibotaru L. F., Ceulemans A. Mechanism of a Strongly Anisotropic MoIII-CN-MnII Spin-Spin Coupling in Molecular Magnets Based on the [Mo (CN) 7] 4-Heptacyanometalate: A New Strategy for Single-Molecule Magnets with High Blocking Temperatures //Journal of the American Chemical Society. – 2003. – Т. 125. – №. 32. – С. 9750-9760.
129. Gütlich P., Garcia Y., Goodwin H. A. Spin crossover phenomena in Fe (ii) complexes Dedicated to Professor FA Cotton on occasion of his 70th birthday //Chemical Society Reviews. – 2000. – Т. 29. – №. 6. – С. 419-427.
130. Breuning E. et al. Spin crossover in a supramolecular Fe4II [2× 2] grid triggered by temperature, pressure, and light //Angewandte Chemie International Edition. – 2000. – Т. 39. – №. 14. – С. 2504-2507.
131. Ida H. et al. Effect of Nonmagnetic Substitution on the Magnetic Properties and Charge-Transfer Phase Transition of an Iron Mixed-Valence Complex,(n-C3H7) 4N [FeIIFeIII (dto) 3](dto= C2O2S2) //Inorganic chemistry. – 2012. – Т. 51. – №. 16. – С. 8989-8996.
149















