Диссертация (1103447), страница 15
Текст из файла (страница 15)
Chem. Phys. 2015, 142, 171105.[22] Vinogradov, S.V. Colloidal Microgels in Drug Delivery Applications.Curr. Pharm. Des. 2006, 12, 4703–4712.106[23] Saunders, B.R.; Laajam, N.; Daly, E.; Teow, S.; Hu, X.; Stepto, R.Microgels: From responsive polymer colloids to biomaterials. Adv. ColloidInterface Sci. 2009, 147, 251–262.[24] Baker, W.O. Microgel, a New Macromolecule.
Ind. Eng. Chem. 1949,41, 511–520.[25] Ngai, T.; Behrens, S.H.; Auweter, H. Novel Emulsions Stabilized bypH and Temperature Sensitive Microgels. Chem. Commun. 2005, 331–333.[26] Fujii, S.; Read, E.S.; Binks, B.P.; Armes, S.P. Stimulus-ResponsiveEmulsifiers Based on Nanocomposite Microgel Particles. Adv. Mater. 2005, 17,1014–1018.[27] Pickering, S.U. CXCVI. – Emulsions.
J. Chem. Soc. Trans. 1907, 91,2001–2021.[28] Nallamilli, T.; Mani, E.; Basavaraj, M.J. A Model for the Prediction ofDroplet Size in Pickering Emulsions Stabilized by Oppositely Charged Particles.Langmuir 2014, 30, 9336–9345.[29] Höfl, S.; Zitzler, L.; Hellweg, T.; Herminghaus, S.; Mugele, F. VolumePhase Transition of “Smart” Microgels in Bulk Solution and Adsorbed at anInterface: A Combined AFM, Dynamic Light, and Small Angle Neutron ScatteringStudy. Polymer 2007, 48, 245–254.[30] Destribats, M.; Lapeyre, V.; Wolfs, M.; Sellier, E.; Leal-Calderon, F.;Ravaine, V.; Schmitt, V.
Soft microgels as pickering emulsion stabilisers: role ofparticle deformability. Soft Matter 2011, 7, 7689–7698.[31] Geisel, K.; Isa, L.; Richtering, W. Unraveling the 3D Localization andDeformation of Responsive Microgels at Oil/Water Interfaces: a Step Forward inUnderstanding Soft Emulsion Stabilizers. Langmuir 2012, 28, 15770.[32] Li, Z.;Geisel, K.;Richtering, W.;Ngai, T.Poly(N-Isopropylacrylamide) Microgels at the Oil–Water Interface: Adsorption Kinetics.Soft Matter 2013, 9, 9939–9946.[33] Monteillet, H.; Workamp, M.; Appel, J.; Kleijn, J.M.; Leermakers,F.A.M.; Sprakel, J. Ultrastrong Anchoring Yet Barrier-Free Adsorption of107Composite Microgels at Liquid Interfaces Adv. Mater.
Interfaces 2014, 1,1300121.[34] Brugger, B.; Rosen, B.A.; Richtering, W. Microgels as StimuliResponsive Stabilizers for Emulsions. Langmuir 2008, 24, 12202–12208.[35] Monteux, C.; Marliere, C.; Paris, P.; Pantoustier, N.; Sanson, N.;Perrin, P. Poly(N-Isopropylacrylamide) Microgels at the Oil-Water Interface:Interfacial Properties as a Function of Temperature. Langmuir 2010, 26, 13839–13846.[36] Wu, Y.; Wiese, S.; Balaceanu, A.; Richtering, W.; Pich, A. Behavior ofTemperature-Responsive Copolymer Microgels at the Oil/Water Interface.Langmuir 2014, 30, 7660–7669.[37] Wiese, S.; Tsvetkova, Y.; Daleidena, N.J.E.; Spieß, A.C.; Richtering, W.Microgel Stabilized Emulsions: Breaking on Demand.
Colloids Surf. APhysicochem. Eng. Asp. 2016, 495, 193–199.[38] Destribats, M.; Lapeyre, V.; Sellier, E.; Leal-Calderon, F.; Schmitt, V;Ravaine, V. Water-in-oil Emulsions Stabilized by Water-dispersible Poly(nisopropylacrylamide) Microgels: Understanding anti-Finkle Behavior. Langmuir2011, 27, 14096–14107.[39] Geisel, K.; Isa, L.; Richtering, W.
The Compressibility of pH-SensitiveMicrogels at the Oil-Water Interface: Higher Charge Leads to Less Repulsion.Angew. Chem. Int. Ed. 2014, 53, 4905–4909.[40] Liu, T.T.; Seiffert, S.; Thiele, J.; Abate, A.R.; Weitz, D.A.; Richtering, W.Non-coalescence of Oppositely Charged Droplets in pH-sensitive Emulsions. Proc.Natl. Acad. Sci. U. S.
A. 2012, 109, 384–389.[41] Geisel, K.; Rudov, A.A.; Potemkin, I.I.; Richtering, W. Hollow andCore−Shell Microgels at Oil−Water Interfaces: Spreading of Soft ParticlesReduces the Compressibility of the Monolayer. Langmuir 2015, 31, 13145–13154.[42] Isa, L.;Calzolari, D.C.E.;Pontoni, D.;Gillich, T.;Nelson, A.;Zirbs, R.; Sánchez-Ferrer, A.; Mezzenga, R.; Reimhult, E. Core-shell Nanoparticle108Monolayers at Planar Liquid-Liquid Interfaces: Effects of Polymer Architecture onthe Interface Microstructure. Soft Matter 2013, 9, 3789–3797.[43] Wiese, S.; Spiess, A.C.; Richtering, W. Microgel-Stabilized SmartEmulsions for Biocatalysis.
Angew. Chem. Int. Ed. 2013, 52, 576–579.[44] Gauthier, M. Arborescent Polymers and Other Dendrigraft Polymers:A Journey Into Structural Diversity. J. Polym. Sci. A Polym. Chem. 2007, 45,3803–3810.[45] Gauthier, M.; Möller, M. Uniform Highly Branched Polymers byAnionic Grafting: Arborescent Graft Polymers. Macromolecules 1991, 24, 4548–4553.[46] Tomalia, D.A.; Hedstrand, D.M.; Ferritto, M.S. Comb-Burst DendrimerTopology: New Macromolecular Architecture Derived From Dendritic Grafting.Macromolecules 1991, 24, 1435–1438.[47] Gauthier, M.; Tichagwa, L.; Downey, J.S.; Gao, S.
Arborescent GraftCopolymers: Highly Branched Macromolecules With a Core-Shell Morphology.Macromolecules 1996, 29, 519–527.[48] Hempenius, M.A.; Michelberger, W.; Möller, M. Arborescent GraftPolybutadienes. Macromolecules 1997, 30, 5602–5605.[49] Kee, R.A.; Gauthier, M. Arborescent Polystyrene-graft-polyisopreneCopolymers. Macromolecules 1999, 32, 6478–6484.[50] Walach, W.; Kowalczuk, A.; Trzebicka, B. Synthesis of High-molarMass Arborescent-Branched Polyglycidol via Sequential Grafting. Macromol.Rapid Commun. 2001, 22, 1272–1277.[51] Li, J.; Gauthier, M.; Teertstra, S.J.; Xu, H.; Sheiko, S.S. Synthesis ofArborescentPolystyrene-graft-polyisopreneCopolymersUsingAcetylatedSubstrates.
Macromolecules 2004, 37, 795–802.[52] Puskas, J.E.; Kwon, Y.; Anthony, P.; Bhowmick, A.K. Synthesis andCharacterizationofNovelDendritic(Arborescent,Hyperbranched)Polyisobutylene-polystyrene Block Copolymers. J. Polym. Sci. A Polym. Chem.2005, 43, 1811–1826.109[53] Yuan, Z.; Gauthier, M. Synthesis of Arborescent Copolymers by a OnePot Method.
Macromol. Chem. Phys. 2007, 208, 1615–1624.[54] Dockendorff, J.; Gauthier, M. Synthesis of Arborescent Polystyrene-g[poly(2-vinylpyridine)-b-polystyrene] Core–Shell–Corona Copolymers. J. Polym.Sci. A Polym. Chem. 2014, 52, 1075–1085.[55] Kee, R.A.;Gauthier, M.ArborescentPolystyrene-graft-poly(2-vinylpyridine) Copolymers: Synthesis and Enhanced Polyelectrolyte Effect inSolution. Macromolecules 2002, 35, 6526–6532.[56] Kee, R.A.; Gauthier, M.
Arborescent Polystyrene-graft-poly(tert-butylmethacrylate) Copolymers: Synthesis and Enhanced Polyelectrolyte Effect inSolution. J. Polym. Sci. A Polym. Chem. 2008, 46, 2335–2346.[57] Whitton, G.; Gauthier, M. Arborescent Micelles: Dendritic Poly(cbenzyl L-glutamate) Cores Grafted with Hydrophilic Chain Segments. J.
Polym.Sci. A Polym. Chem. 2016, 54, 1197–1209.[58] Alsehli, M.; Gauthier, M. Arborescent Polypeptides for Sustained DrugDelivery. MRS Online Proc. Libr. 2016, 1819. DOI: 10.1557/opl.2016.70.[59] Cadena, L.-E.S.;Gauthier, M.Phase-SegregatedDendrigraftCopolymer Architectures. Polymers 2010, 2, 596–622.[60] Teertstra, S.J.; Gauthier, M. Dendrigraft Polymers: MacromolecularEngineering on a Mesoscopic Scale.
Prog. Polym Sci. 2004, 29, 277–327.[61] Gauthier, M.; Möller, M; Burchard, W. Structural Rigidity Control inArborescent Graft Polymers. Macromol. Symp. 1994, 77, 43–49.[62] Gauthier, M.; Li, W.; Tichagwa, L. Hard Sphere Behaviour ofArborescent Polystyrenes: Viscosity and Differential Scanning CalorimetryStudies.
Polymer 1997, 38, 6363–6370.[63] Choi, S; Briber, R.M.; Bauer, B.J.; Topp, A.; Gauthier, M.; Tichagwa, L.Small-angle Neutron Scattering of Solutions of Arborescent Graft Polystyrenes.Macromolecules 1999, 32, 7879–7886.110[64] Mouray, T.H.; Turner, S.R.; Rubinstein, M.; Frechet, J.M.J.; Hawker,C.J.; Wooley, K.L. Unique Behavior of Dendritic Molecules: Intrinsic Viscosity ofPolyether Dendrimers. Macromolecules 1992, 25, 2401–2406.[65] Gauthier, M.; Li, J.; Dockendorff, J. Arborescent Polystyrene-graftpoly(2-vinylpyridine) Copolymers as Unimolecular Micelles.
Synthesis FromAcetylated Substrates. Macromolecules 2003, 36, 2642–2648.[66] Yun, I.S.; Gadd, G.E.; Lo, V.; Gauthier, M.; Munam, A. TemperatureResponsive Supramolecular Assembly and Morphology of Arborescent CopolymerMicelles with a Solvophilic Core-Solvophobic Shell Structure. Macromolecules2008, 41, 7166–7172.[67] Dockendorff, J.; Gauthier, M.; Mourran, A.; Möller, M. ArborescentAmphiphilic Copolymers as Templates for the Preparation of Gold Nanoparticles.Macromolecules 2008, 41, 6621–6623.[68] Nguon, O.; Gauthier, M.; Karanassios, V. Determination of theLoading and Stability of Pd in an Arborescent Copolymer in Ethanol byMicroplasma-Optical Emission Spectrometry.
RSC Advances 2014, 4, 8978–8984.[69] Njikang, G.; Gauthier, M.; Li, J. Arborescent Polystyrene-graftpoly(2-vinylpyridine) Copolymers as Unimolecular Micelles: SolubilizationStudies. Polymer 2008, 49, 1276–1284.[70] Njikang, G.N.; Gauthier, M.; Li, J. Sustained Release Properties ofArborescent Polystyrene-graft-poly(2-vinylpyridine) Copolymers. Polymer 2008,49, 5474–5481.[71] Gauthier, M.; Lin, W.-Y.; Teertstra, S.J.; Tzoganakis, C. FluorineContaining Arborescent Polystyrene-graft-polyisoprene Copolymers as PolymerProcessing Additives. Polymer 2010, 51, 3123–3129.[72] Sheiko, S.S.; Gauthier, M.; Möller M. Monomolecular Films ofArborescent Graft Polystyrenes.














