Диссертация (1103411), страница 38
Текст из файла (страница 38)
Vol. 31, № 10. P. 1540–1542.174. M�jean G. et al. Remote detection and identification of biological aerosols using afemtosecond terawatt lidar system // Appl. Phys. B Lasers Opt. 2004. Vol. 78, № 5. P.535–537.- 189 175. Nomura Y. et al. Phase-stable sub-cycle mid-infrared conical emission from filamentationin gases // Opt. Express.
2012. Vol. 20, № 22. P. 24741–24747.176. Xu H.L., Chin S.L. Femtosecond Laser Filamentation for Atmospheric Sensing //Sensors. 2010. Vol. 11, № 1. P. 32–53.177. Aldén M., Goldsmith J.E.M., Westblom U. Two-photon-excited stimulated emissionfrom atomic oxygen in flames and cold gases // Opt. Lett. 1989. Vol. 14, № 6. P. 305–307.178. Wang T.-J. et al. Self-seeded forward lasing action from a femtosecond Ti:sapphire laserfilament in air // Laser Phys. Lett.
2013. Vol. 10, № 12. P. 125401.179. Ivanov A.A., Alfimov M.V., Zheltikov A.M. Femtosecond pulses in nanophotonics //Phys.-Uspekhi. 2004. Vol. 47, № 7. P. 687–704.180. Chia S.-H. et al. A sub-100fs self-starting Cr:forsterite laser generating 1.4W outputpower // Opt. Express. 2010. Vol.
18, № 23. P. 24085–24091.181. Trebino R. et al. Measuring ultrashort laser pulses in the time-frequency domain usingfrequency-resolved optical gating // Rev. Sci. Instrum. 1997. Vol. 68, № 9. P. 3277–3295.182. Walmsley I.A., Dorrer C. Characterization of ultrashort electromagnetic pulses // Adv.Opt. Photonics. 2009.
Vol. 1, № 2. P. 308.183. Chu S.-W. et al. Multimodal nonlinear spectral microscopy based on a femtosecondCr:forsterite laser // Opt. Lett. 2001. Vol. 26, № 23. P. 1909–1911.184. Sun C.-K. Higher Harmonic Generation Microscopy // Microsc. Tech. / ed. Rietdorf J.Springer Berlin Heidelberg, 2005. P. 17–56.185. Kobat D. et al.
Deep tissue multiphoton microscopy using longer wavelength excitation //Opt. Express. 2009. Vol. 17, № 16. P. 13354–13364.186. Fedotov A.B. et al. Powerful wavelength-tunable ultrashort solitons in a solid-corephotonic-crystal fiber // Opt. Lett. 2009.
Vol. 34, № 6. P. 851–853.187. Fedotov I.V. et al. Multisoliton supercontinuum from a photonic-crystal fibre as a sourceof frequency-tunable megawatt femtosecond pulses in the infrared // Quantum Electron.2009. Vol. 39, № 7. P. 634.188. Voronin A.A. et al. Spectral interference of frequency-shifted solitons in a photoniccrystal fiber // Opt. Lett. 2009.
Vol. 34, № 5. P. 569–571.189. Fedotov I.V. et al. Generation of 20 fs, 20 MW pulses in the near-infrared by pulsecompression using a large-mode-area all-silica photonic band-gap fiber // J. Mod. Opt.2010. Vol. 57, № 19. P. 1867–1870.190. Cormack I.G. et al. Observation of soliton self-frequency shift in photonic crystal fibre //Electron. Lett. 2002.
Vol. 38, № 4. P. 167–169.191. Skryabin D.V. et al. Soliton Self-Frequency Shift Cancellation in Photonic Crystal Fibers// Science. 2003. Vol. 301, № 5640. P. 1705–1708.- 190 192. Voronin A.A., Zheltikov A.M. Soliton self-frequency shift decelerated by self-steepening// Opt. Lett. 2008. Vol. 33, № 15. P. 1723–1725.193. Serebryannikov E.E., Zheltikov A.M.
Soliton self-frequency shift with diffractionsuppressed wavelength variance and timing jitter // J. Opt. Soc. Am. B. 2006. Vol. 23, №9. P. 1882–1887.194. Petrov V., Seifert F., Noack F. High repetition rate traveling wave optical parametricgenerator producing nearly bandwidth limited 50 fs infrared light pulses // Appl. Phys.Lett. 1994. Vol.
65, № 3. P. 268–270.195. Mukamel S. Principles of nonlinear optical spectroscopy. Oxford: Oxford universitypress, 1995.196. Woutersen S., Emmerichs U., Bakker H.J. Femtosecond Mid-IR Pump-ProbeSpectroscopy of Liquid Water: Evidence for a Two-Component Structure // Science.1997. Vol. 278, № 5338. P. 658–660.197. Corkum P.B., Krausz F. Attosecond science // Nat. Phys.
2007. Vol. 3, № 6. P. 381–387.198. Popmintchev T. et al. Bright Coherent Ultrahigh Harmonics in the keV X-ray Regimefrom Mid-Infrared Femtosecond Lasers // Science. 2012. Vol. 336, № 6086. P. 1287–1291.199. Hernández-García C. et al. Zeptosecond High Harmonic keV X-Ray Waveforms Drivenby Midinfrared Laser Pulses // Phys. Rev.
Lett. 2013. Vol. 111, № 3. P. 033002.200. Petrov V. et al. Femtosecond parametric generation in ZnGeP2 // Opt. Lett. 1999. Vol.24, № 6. P. 414–416.201. Petrov V., Rotermund F., Noack F. Generation of high-power femtosecond light pulses at1 kHz in the mid-infrared spectral range between 3 and 12 µm by second-order nonlinearprocesses in optical crystals // J. Opt. Pure Appl. Opt. 2001. Vol. 3, № 3.
P. R1.202. Kaindl R.A. et al. Generation, shaping, and characterization of intense femtosecondpulses tunable from 3 to 20 ?m // J. Opt. Soc. Am. B. 2000. Vol. 17, № 12. P. 2086–2094.203. Rotermund F., Petrov V., Noack F. Difference-frequency generation of intensefemtosecond pulses in the mid-IR (4–12 μm) using HgGa2S4 and AgGaS2 // Opt.Commun. 2000.
Vol. 185, № 1–3. P. 177–183.204. Andriukaitis G. et al. 90 GW peak power few-cycle mid-infrared pulses from an opticalparametric amplifier // Opt. Lett. 2011. Vol. 36, № 15. P. 2755–2757.205. Kartashov D. et al. White light generation over three octaves by femtosecond filament at3.9 μm in argon // Opt. Lett. 2012. Vol.
37, № 16. P. 3456–3458.206. Suhalim J.L. et al. The need for speed // J. Biophotonics. 2012. Vol. 5, № 5-6. P. 387–395.207. Nibbering E.T.J., Wiersma D.A., Duppen K. Ultrafast nonlinear spectroscopy withchirped optical pulses // Phys. Rev. Lett. 1992. Vol. 68, № 4. P. 514–517.- 191 208. Zheltikov A.M., Naumov A.N. High-resolution four-photon spectroscopy with chirpedpulses // Quantum Electron.
2000. Vol. 30, № 7. P. 606.209. Naumov A.N., Zheltikov A.M. Frequency–time and time–space mappings for single-shotcoherent four-wave mixing with chirped pulses and broad beams // J. Raman Spectrosc.2001. Vol. 32, № 11. P. 960–970.210. Hellerer T., Enejder A.M.K., Zumbusch A. Spectral focusing: High spectral resolutionspectroscopy with broad-bandwidth laser pulses // Appl. Phys. Lett.
2004. Vol. 85, № 1.P. 25–27.211. Druet S.A.J., Taran J.-P.E. Cars spectroscopy // Prog. Quantum Electron. 1981. Vol. 7, №1. P. 1–72.212. Jurna M. et al. Visualizing Resonances in the Complex Plane with Vibrational PhaseContrast Coherent Anti-Stokes Raman Scattering // Anal. Chem. 2010. Vol. 82, № 18. P.7656–7659.213. Jurna M. et al.
Vibrational Phase Contrast Microscopy by Use of Coherent Anti-StokesRaman Scattering // Phys. Rev. Lett. 2009. Vol. 103, № 4. P. 043905.214. Ferezou I., Bolea S., Petersen C.C.H. Visualizing the Cortical Representation of WhiskerTouch: Voltage-Sensitive Dye Imaging in Freely Moving Mice // Neuron. 2006. Vol. 50,№ 4. P. 617–629.215. Амитонова Л.В. Световодные системы для нейрофотоники: Канд. дис.
Москва:МГУ имени М.В.Ломоносова, 2013. 145 p.216. Flusberg B.A. et al. Fiber-optic fluorescence imaging // Nat. Methods. 2005. Vol. 2, №12. P. 941–950.217. Yelin D. et al. Three-dimensional miniature endoscopy // Nature. 2006. Vol. 443, №7113. P. 765–765.218. Boyden E.S. et al. Millisecond-timescale, genetically targeted optical control of neuralactivity // Nat.
Neurosci. 2005. Vol. 8, № 9. P. 1263–1268.219. Ferguson J.A. et al. A fiber-optic DNA biosensor microarray for the analysis of geneexpression // Nat. Biotechnol. 1996. Vol. 14, № 13. P. 1681–1684.220. Konorov S.O. et al. Laser breakdown with millijoule trains of picosecond pulsestransmitted through a hollow-core photonic-crystal fibre // J.
Phys. Appl. Phys. 2003.Vol. 36, № 12. P. 1375.221. Tauer J. et al. High-throughput of single high-power laser pulses by hollow photonicband gap fibers // Laser Phys. Lett. 2007. Vol. 4, № 6. P. 444.222. Lozovoy V.V., Pastirk I., Dantus M. Multiphoton intrapulse interference.?IV.?Ultrashortlaserpulse spectral phase characterization and compensation // Opt. Lett. 2004. Vol.
29,№ 7. P. 775–777.- 192 223. Cregan R.F. et al. Single-Mode Photonic Band Gap Guidance of Light in Air // Science.1999. Vol. 285, № 5433. P. 1537–1539.224. Lenzner M. et al. Femtosecond Optical Breakdown in Dielectrics // Phys. Rev.
Lett.1998. Vol. 80, № 18. P. 4076–4079.225. Wang B.-G. et al. In-vivo intratissue ablation by nanojoule near-infrared femtosecondlaser pulses // Cell Tissue Res. 2007. Vol. 328, № 3. P. 515–520.226. Chung S.H., Mazur E. Surgical applications of femtosecond lasers // J. Biophotonics.2009. Vol. 2, № 10. P. 557–572.227. Baumgart J. et al. Quantified femtosecond laser based opto-perforation of living GFSHR17 and MTH53 a cells // Opt.
Express. 2008. Vol. 16, № 5. P. 3021–3031.228. Iwanaga S. et al. Slow Ca2+ wave stimulation using low repetition rate femtosecondpulsed irradiation // Opt. Express. 2006. Vol. 14, № 2. P. 717–725.229. Cho S.H. et al. Low-repetition-rate high-peak-power Kerr-lens mode-locked TiAl2O3laser with a multiple-pass cavity // Opt. Lett. 1999. Vol.
24, № 6. P. 417–419.230. Cho S.H. et al. Generation of 90-nJ pulses with a 4-MHz repetition-rate Kerr-lens modelocked Ti:Al2O3 laser operating with net positive and negative intracavity dispersion //Opt. Lett. 2001. Vol. 26, № 8. P. 560–562.231. Planas S.A.
et al. Spectral narrowing in the propagation of chirped pulses in single-modefibers // Opt. Lett. 1993. Vol. 18, № 9. P. 699–701.232. Austin D.R. et al. Dispersive wave blue-shift in supercontinuum generation // Opt.Express. 2006. Vol. 14, № 25. P. 11997–12007.233. Akhmanov S. et al. Nonstationary nonlinear optical effects and ultrashort light pulseformation // IEEE J. Quantum Electron.














