Диссертация (1103411), страница 37
Текст из файла (страница 37)
483 p.117. Akhmanov S.A., Sukhorukov A.P., Chirkin A.S. Nonstationary phenomena and spacetime analogy in nonlinear optics // Sov Phys JETP. 1969. Vol. 28. P. 748–757.118. Marangoni M.A. et al. Narrow-bandwidth picosecond pulses by spectral compression offemtosecond pulses in second-order nonlinear crystals // Opt.
Express. 2007. Vol. 15, №14. P. 8884–8891.119. Fatome J. et al. All-fiber spectral compression of picosecond pulses at telecommunicationwavelength enhanced by amplitude shaping // Appl. Opt. 2012. Vol. 51, № 19. P. 4547–4553.120. Pontecorvo E. et al. Femtosecond stimulated Raman spectrometer in the 320-520nmrange // Opt.
Express. 2011. Vol. 19, № 2. P. 1107–1112.121. Marangoni M. et al. Fiber-format CARS spectroscopy by spectral compression offemtosecond pulses from a single laser oscillator // Opt. Lett. 2009. Vol. 34, № 21. P.3262–3264.122. Sorokin P.P., Lankard J.R. Stimulated Emission Observed from an Organic Dye, Chloroaluminum Phthalocyanine // IBM J Res Dev.
1966. Vol. 10, № 2. P. 162–163.123. Akhmanov S.A. et al. Observation of parametric amplification in the optical range // JetpLett. 1965. Vol. 2. P. 191–193.124. Russell P. Photonic Crystal Fibers // Science. 2003. Vol. 299, № 5605. P. 358–362.125.
Knight J.C. Photonic crystal fibres // Nature. 2003. Vol. 424, № 6950. P. 847–851.126. Knight J.C. et al. Photonic Band Gap Guidance in Optical Fibers // Science. 1998. Vol.282, № 5393. P. 1476–1478.127. Zheltikov A.M. Holey fibers // Phys.-Uspekhi. 2000. Vol. 43, № 11. P. 1125–1136.128. Zheltikov A.M. Nonlinear optics of microstructure fibers // Phys.-Uspekhi. 2004. Vol.
47,№ 1. P. 69–98.- 186 129. Dudley J.M., Genty G., Coen S. Supercontinuum generation in photonic crystal fiber //Rev. Mod. Phys. 2006. Vol. 78, № 4. P. 1135–1184.130. Holzwarth R. et al. Optical Frequency Synthesizer for Precision Spectroscopy // Phys.Rev. Lett. 2000. Vol. 85, № 11. P. 2264–2267.131. Benabid F. et al. Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core PhotonicCrystal Fiber // Science. 2002. Vol. 298, № 5592. P. 399–402.132.
Желтиков А.М. Микроструктурированные световоды для нового поколенияволоконно-оптических источников и преобразователей световых импульсов //Uspekhi Fiz. Nauk. 2007. Vol. 177, № 7. P. 737.133. Heckl O.H. et al. Temporal pulse compression in a xenon-filled Kagome-type hollowcore photonic crystal fiber at high average power // Opt. Express. 2011. Vol. 19, № 20.
P.19142–19149.134. Doronina-Amitonova L.V. et al. Photonic-crystal-fiber platform for multicolor multilabelneurophotonic studies // Appl. Phys. Lett. 2011. Vol. 98, № 25. P. 253706.135. Doronina-Amitonova L.V. et al. Fiber-optic Raman sensing of cell proliferation probesand molecular vibrations: Brain-imaging perspective // Appl. Phys. Lett. 2012. Vol. 101,№ 11. P. 113701–113701–3.136. Kano H., Hamaguchi H. Ultrabroadband (>2500cm−1) multiplex coherent anti-StokesRaman scattering microspectroscopy using a supercontinuum generated from a photoniccrystal fiber // Appl. Phys.
Lett. 2005. Vol. 86, № 12. P. 121113.137. Selm R. et al. Ultrabroadband background-free coherent anti-Stokes Raman scatteringmicroscopy based on a compact Er: fiber laser system // Opt. Lett. 2010. Vol. 35, № 19.P. 3282–3284.138. Mitschke F.M., Mollenauer L.F. Discovery of the soliton self-frequency shift // Opt. Lett.1986. Vol.
11, № 10. P. 659–661.139. Gordon J.P. Theory of the soliton self-frequency shift // Opt. Lett. 1986. Vol. 11, № 10.P. 662–664.140. Teisset C. et al. Soliton-based pump-seed synchronization for few-cycle OPCPA // Opt.Express. 2005. Vol. 13, № 17. P. 6550–6557.141. Doronina L.V. et al. Tailoring the soliton output of a photonic crystal fiber for enhancedtwo-photon excited luminescence response from fluorescent protein biomarkers andneuron activity reporters // Opt.
Lett. 2009. Vol. 34, № 21. P. 3373–3375.142. Ivanov A.A., Podshivalov A.A., Zheltikov A.M. Frequency-shifted megawatt solitonoutput of a hollow photonic-crystal fiber for time-resolved coherent anti-Stokes Ramanscattering microspectroscopy // Opt. Lett. 2006. Vol. 31, № 22. P. 3318–3320.143. Fedotov A.B.
et al. Spectral compression of frequency-shifting solitons in a photoniccrystal fiber // Opt. Lett. 2009. Vol. 34, № 5. P. 662–664.- 187 144. Jurna M. et al. Noncritical phase-matched lithium triborate optical parametric oscillatorfor high resolution coherent anti-Stokes Raman scattering spectroscopy and microscopy //Appl. Phys. Lett. 2006. Vol. 89, № 25.
P. 251116.145. Sharping J.E. et al. Optical parametric oscillator based on four-wave mixing inmicrostructure fiber // Opt. Lett. 2002. Vol. 27, № 19. P. 1675–1677.146. Marhic M.E. Fiber Optical Parametric Amplifiers, Oscillators and Related Devices.Cambridge University Press, 2008. 379 p.147. Lamb E.S.
et al. Fiber optical parametric oscillator for coherent anti-Stokes Ramanscattering microscopy // Opt. Lett. 2013. Vol. 38, № 20. P. 4154.148. Nordtvedt K. Testing Relativity with Laser Ranging to the Moon // Phys. Rev. 1968. Vol.170, № 5. P. 1186–1187.149. Bender P.L. et al. The Lunar Laser Ranging Experiment Accurate ranges have given alarge improvement in the lunar orbit and new selenophysical information // Science.1973.
Vol. 182, № 4109. P. 229–238.150. Wandinger U. Introduction to Lidar // Lidar / ed. Weitkamp D.C. Springer New York,2005. P. 1–18.151. Valeur B., Berberan-Santos M.N. Molecular Fluorescence: Principles and Applications.John Wiley & Sons, 2013. 671 p.152. Moya I., Cerovic Z.G. Remote Sensing of Chlorophyll Fluorescence: Instrumentation andAnalysis // Chlorophyll Fluoresc.
/ ed. Papageorgiou G.C., Govindjee. SpringerNetherlands, 2004. P. 429–445.153. Wu M. et al. Stand-off Detection of Chemicals by UV Raman Spectroscopy // Appl.Spectrosc. 2000. Vol. 54, № 6. P. 800–806.154. Cremers D.A. et al. Laser-Induced Breakdown Spectroscopy, Elemental Analysis //Encycl. Anal.
Chem. John Wiley & Sons, Ltd, 2006.155. Gottfried J.L. et al. Laser-induced breakdown spectroscopy for detection of explosivesresidues: a review of recent advances, challenges, and future prospects // Anal. Bioanal.Chem. 2009. Vol. 395, № 2. P. 283–300.156. Sallé B. et al. Laser-Induced Breakdown Spectroscopy for Mars surface analysis:capabilities at stand-off distances and detection of chlorine and sulfur elements //Spectrochim.
Acta Part B At. Spectrosc. 2004. Vol. 59, № 9. P. 1413–1422.157. Grotzinger J.P. et al. Mars Science Laboratory Mission and Science Investigation // SpaceSci. Rev. 2012. Vol. 170, № 1-4. P. 5–56.158. Maurice S. et al. The ChemCam Instrument Suite on the Mars Science Laboratory (MSL)Rover: Science Objectives and Mast Unit Description // Space Sci. Rev. 2012. Vol. 170,№ 1-4. P. 95–166.- 188 159. Joo K.-N., Kim S.-W. Absolute distance measurement by dispersive interferometry usinga femtosecond pulse laser // Opt. Express.
2006. Vol. 14, № 13. P. 5954–5960.160. Jin J. et al. Absolute distance measurements using the optical comb of a femtosecondpulse laser // Int J Precis Eng Manuf. 2007. Vol. 8, № 4. P. 22–26.161. Gravel J.-F. et al. Sensing of Halocarbons Using Femtosecond Laser-InducedFluorescence // Anal. Chem. 2004. Vol. 76, № 16. P. 4799–4805.162. Baudelet M. et al. Femtosecond time-resolved laser-induced breakdown spectroscopy fordetection and identification of bacteria: A comparison to the nanosecond regime // J.Appl.
Phys. 2006. Vol. 99, № 8. P. 084701.163. Scully M.O. et al. FAST CARS: Engineering a laser spectroscopic technique for rapididentification of bacterial spores // Proc. Natl. Acad. Sci. 2002. Vol. 99, № 17. P. 10994–11001.164. Petrov G.I. et al. Comparison of coherent and spontaneous Raman microspectroscopiesfor noninvasive detection of single bacterial endospores // Proc.
Natl. Acad. Sci. 2007.Vol. 104, № 19. P. 7776–7779.165. Li H. et al. Single-beam coherent anti-stokes Raman scattering for standoff detection //Opt. Photonics News. 2008. Vol. 19, № 12. P. 46–46.166. Li H. et al. Standoff and arms-length detection of chemicals with single-beam coherentanti-Stokes Raman scattering // Appl.
Opt. 2009. Vol. 48, № 4. P. B17–B22.167. Bremer M.T., Dantus M. Standoff explosives trace detection and imaging by selectivestimulated Raman scattering // Appl. Phys. Lett. 2013. Vol. 103, № 6. P. 061119.168. Pestov D. et al. Optimizing the Laser-Pulse Configuration for Coherent RamanSpectroscopy // Science. 2007. Vol. 316, № 5822. P. 265–268.169.
Pestov D. et al. Single-shot detection of bacterial endospores via coherent Ramanspectroscopy // Proc. Natl. Acad. Sci. 2008. Vol. 105, № 2. P. 422–427.170. Kandidov V.P., Kosareva O.G., Koltun A.A. Nonlinear-optical transformation of a highpower femtosecond laser pulse in air // Quantum Electron. 2003. Vol. 33, № 1. P. 69–75.171. Couairon A., Mysyrowicz A.
Femtosecond filamentation in transparent media // Phys.Rep. 2007. Vol. 441, № 2-4. P. 47–189.172. Kandidov V.P., Shlenov S.A., Kosareva O.G. Filamentation of high-power femtosecondlaser radiation // Quantum Electron. 2009. Vol. 39, № 3. P. 205–228.173. Xu H.L., Liu W., Chin S.L. Remote time-resolved filament-induced breakdownspectroscopy of biological materials // Opt. Lett. 2006.














