Диссертация (1103411), страница 36
Текст из файла (страница 36)
271–282.64.Helmchen F. et al. A Miniature Head-Mounted Two-Photon Microscope: HighResolution Brain Imaging in Freely Moving Animals // Neuron. 2001. Vol. 31, № 6. P.903–912.- 182 65.Mainen Z.F. et al. Two-Photon Imaging in Living Brain Slices // Methods. 1999. Vol. 18,№ 2. P. 231–239.66.Maker P.D., Terhune R.W. Study of Optical Effects Due to an Induced Polarization ThirdOrder in the Electric Field Strength // Phys. Rev.
1965. Vol. 137, № 3A. P. A801–A818.67.Eesley G.L. Coherent raman spectroscopy // J. Quant. Spectrosc. Radiat. Transf. 1979.Vol. 22, № 6. P. 507–576.68.Duncan M.D., Reintjes J., Manuccia T.J. Scanning coherent anti-Stokes Ramanmicroscope // Opt. Lett. 1982.
Vol. 7, № 8. P. 350.69.Volkmer A., Cheng J.-X., Sunney Xie X. Vibrational Imaging with High Sensitivity viaEpidetected Coherent Anti-Stokes Raman Scattering Microscopy // Phys. Rev. Lett. 2001.Vol. 87, № 2. P. 023901.70.Cheng J.-X. et al. Laser-Scanning Coherent Anti-Stokes Raman Scattering Microscopyand Applications to Cell Biology // Biophys. J.
2002. Vol. 83, № 1. P. 502–509.71.Le T.T., Huff T.B., Cheng J.-X. Coherent anti-Stokes Raman scattering imaging of lipidsin cancer metastasis // BMC Cancer. 2009. Vol. 9, № 1. P. 42.72.Masia F. et al. Quantitative Chemical Imaging and Unsupervised Analysis UsingHyperspectral Coherent Anti-Stokes Raman Scattering Microscopy // Anal.
Chem. 2013.Vol. 85, № 22. P. 10820–10828.73.Zumbusch A., Langbein W., Borri P. Nonlinear vibrational microscopy applied to lipidbiology // Prog. Lipid Res. 2013. Vol. 52, № 4. P. 615–632.74.Zhang X. et al. Label-Free Live-Cell Imaging of Nucleic Acids Using Stimulated RamanScattering Microscopy // ChemPhysChem. 2012. Vol. 13, № 4. P. 1054–1059.75.Kim S.-H. et al. Multiplex Coherent Anti-Stokes Raman Spectroscopy Images IntactAtheromatous Lesions and Concomitantly Identifies Distinct Chemical Profiles ofAtherosclerotic Lipids // Circ. Res. 2010.
Vol. 106, № 8. P. 1332–1341.76.Hellerer T. et al. Monitoring of lipid storage in Caenorhabditis elegans using coherentanti-Stokes Raman scattering (CARS) microscopy // Proc. Natl. Acad. Sci. 2007. Vol.104, № 37. P. 14658–14663.77.Lee J.Y. et al. Three-color multiplex CARS for fast imaging and microspectroscopy intheentire CHn stretching vibrational region // Opt. Express. 2009. Vol.
17, № 25. P.22281–22295.78.Bélanger E. et al. Live animal myelin histomorphometry of the spinal cord with videorate multimodal nonlinear microendoscopy // J. Biomed. Opt. 2012. Vol. 17, № 2. P.0211071–0211077.79.Nakayama Y. et al. Tunable nanowire nonlinear optical probe // Nature. 2007. Vol. 447,№ 7148.
P. 1098–1101.- 183 80.Kim H., Bryant G.W., Stranick S.J. Superresolution four-wave mixing microscopy // Opt.Express. 2012. Vol. 20, № 6. P. 6042–6051.81.Eckhardt G. et al. Stimulated Raman Scattering From Organic Liquids // Phys. Rev. Lett.1962. Vol. 9, № 11. P. 455–457.82.Owyoung A., Jones E.D. Stimulated Raman spectroscopy using low-power cw lasers //Opt. Lett. 1977.
Vol. 1, № 5. P. 152–154.83.Freudiger C.W. et al. Highly specific label-free molecular imaging with spectrallytailored excitation-stimulated Raman scattering (STE-SRS) microscopy // Nat. Photonics.2011. Vol. 5, № 2. P. 103–109.84.Franken P.A. et al. Generation of Optical Harmonics // Phys.
Rev. Lett. 1961. Vol. 7, №4. P. 118–119.85.Gannaway J.N., Sheppard C.J.R. Second-harmonic imaging in the scanning opticalmicroscope // Opt. Quantum Electron. 1978. Vol. 10, № 5. P. 435–439.86.Gauderon R., Lukins P.B., Sheppard C.J.R. Three-dimensional second-harmonicgeneration imaging with femtosecond laser pulses // Opt.
Lett. 1998. Vol. 23, № 15. P.1209–1211.87.Campagnola P.J., Loew L.M. Second-harmonic imaging microscopy for visualizingbiomolecular arrays in cells, tissues and organisms // Nat. Biotechnol. 2003. Vol. 21, №11. P. 1356–1360.88.Campagnola P.J. et al. High-Resolution Nonlinear Optical Imaging of Live Cells bySecond Harmonic Generation // Biophys. J. 1999. Vol. 77, № 6. P. 3341–3349.89.Svoboda K., Yasuda R.
Principles of Two-Photon Excitation Microscopy and ItsApplications to Neuroscience // Neuron. 2006. Vol. 50, № 6. P. 823–839.90.Anceau C. et al. Local second-harmonic generation enhancement on gold nanostructuresprobed by two-photon microscopy // Opt. Lett. 2003. Vol. 28, № 9.
P. 713–715.91.Zheludev N.I., Emel?yanov V.I. Phase matched second harmonic generation fromnanostructured metallic surfaces // J. Opt. Pure Appl. Opt. 2004. Vol. 6, № 1. P. 26.92.Neacsu C.C., Reider G.A., Raschke M.B. Second-harmonic generation from nanoscopicmetal tips: Symmetry selection rules for single asymmetric nanostructures // Phys. Rev.B. 2005. Vol.
71, № 20. P. 201402.93.Feng* S., Winful H.G. Physical origin of the Gouy phase shift // Opt. Lett. 2001. Vol. 26,№ 8. P. 485–487.94.Débarre D. et al. Imaging lipid bodies in cells and tissues using third-harmonic generationmicroscopy // Nat. Methods. 2006. Vol. 3, № 1. P. 47–53.95.Lippitz M., van Dijk M.A., Orrit M. Third-Harmonic Generation from Single GoldNanoparticles // Nano Lett. 2005. Vol. 5, № 4.
P. 799–802.- 184 96.Hong S.-Y. et al. Optical Third-Harmonic Generation in Graphene // Phys. Rev. X. 2013.Vol. 3, № 2.97.Willig K.I. et al. STED microscopy reveals that synaptotagmin remains clustered aftersynaptic vesicle exocytosis // Nature. 2006. Vol. 440, № 7086. P. 935–939.98.Scatena L.F., Brown M.G., Richmond G.L. Water at Hydrophobic Surfaces: WeakHydrogen Bonding and Strong Orientation Effects // Science. 2001. Vol. 292, № 5518. P.908–912.99.Tittel F.K., Richter D., Fried A. Mid-Infrared Laser Applications in Spectroscopy //Solid-State -Infrared Laser Sources / ed.
Sorokina D.I.T., Vodopyanov D.K.L. SpringerBerlin Heidelberg, 2003. P. 458–529.100. Chen Z., Shen Y.R., Somorjai G.A. Studies of Polymer Surfaces by Sum FrequencyGeneration Vibrational Spectroscopy // Annu. Rev. Phys. Chem. 2002. Vol. 53, № 1. P.437–465.101. Letokhov V.S. Nonlinear Laser Chemistry.
Springer. Berlin, 1983.102. Chen C., Yin Y.-Y., Elliott D.S. Interference between optical transitions // Phys. Rev.Lett. Vol. 64, № 5. P. 507–510.103. Brumer P., Shapiro M. Quantum interference in the control of molecular processes //Philos. Trans. R. Soc. Lond. Ser. Math. Phys. Eng. Sci. 1997. Vol. 355, № 1733. P.2409–2412.104. Kosloff R. et al. Wavepacket dancing: Achieving chemical selectivity by shaping lightpulses // Chem. Phys. 1989. Vol. 139, № 1.
P. 201–220.105. Meshulach D., Silberberg Y. Coherent quantum control of two-photon transitions by afemtosecond laser pulse // Nature. 1998. Vol. 396, № 6708. P. 239–242.106. Pastirk I. et al. Selective two-photon microscopy with shaped femtosecond pulses // Opt.Express. 2003. Vol. 11, № 14. P. 1695–1701.107. Andresen E.R., Rigneault H. Soliton dynamics in photonic-crystal fibers for coherentRaman microspectroscopy and microscopy // Opt. Fiber Technol.
2012. Vol. 18, № 5. P.379–387.108. Weiner A.M. Femtosecond pulse shaping using spatial light modulators // Rev. Sci.Instrum. 2000. Vol. 71, № 5. P. 1929–1960.109. Verluise F. et al. Amplitude and phase control of ultrashort pulses by use of an acoustooptic programmable dispersive filter: pulse compression and shaping // Opt. Lett. 2000.Vol.
25, № 8. P. 575–577.110. Raoult F. et al. Efficient generation of narrow-bandwidth picosecond pulses by frequencydoubling of femtosecond chirped pulses // Opt. Lett. 1998. Vol. 23, № 14. P. 1117–1119.111. Dudovich N., Oron D., Silberberg Y. Single-pulse coherently controlled nonlinear Ramanspectroscopy and microscopy // Nature. 2002.
Vol. 418, № 6897. P. 512–514.- 185 112. Katz O. et al. Standoff detection of trace amounts of solids by nonlinear Ramanspectroscopy using shaped femtosecond pulses // Appl. Phys. Lett. 2008. Vol. 92, № 17.P. 171116.113. Von Vacano B., Wohlleben W., Motzkus M. Actively shaped supercontinuum from aphotonic crystal fiber for nonlinear coherent microspectroscopy // Opt. Lett. 2006.
Vol.31, № 3. P. 413–415.114. Washburn B.R., Buck J.A., Ralph S.E. Transform-limited spectral compression due toself-phase modulation in fibers // Opt. Lett. 2000. Vol. 25, № 7. P. 445–447.115. Andresen E.R., Thøgersen J., Keiding S.R. Spectral compression of femtosecond pulsesin photonic crystal fibers // Opt. Lett. 2005. Vol. 30, № 15. P. 2025–2027.116. Agrawal G. Nonlinear Fiber Optics. Academic Press, 2001.














