Диссертация (1103411), страница 35
Текст из файла (страница 35)
1297–1309.6.Popmintchev T. et al. The attosecond nonlinear optics of bright coherent X-ray generation// Nat. Photonics. 2010. Vol. 4, № 12. P. 822–832.7.Nahata A., Weling A.S., Heinz T.F. A wideband coherent terahertz spectroscopy systemusing optical rectification and electro‐optic sampling // Appl. Phys. Lett. 1996. Vol. 69,№ 16. P. 2321–2323.8.Zipfel W.R., Williams R.M., Webb W.W. Nonlinear magic: multiphoton microscopy inthe biosciences // Nat.
Biotechnol. 2003. Vol. 21, № 11. P. 1369–1377.9.Sutherland R.L. Handbook of Nonlinear Optics. 2 edition (April 22, 2003). New York,USA: CRC Press, 2003. 1010 p.10.Ахманов С.А., Выслоух В.А., Чиркин А.С. Оптика фемтосекундных лазерныхимпульсов. Москва: Наука, 1988. 312 p.11.Желтиков А.М. Сверхкороткие импульсы и методы нелинейной оптики. Москва:Физматлит, 2006.
296 p.12.Wang Y. et al. Four-wave mixing microscopy of nanostructures // Adv. Opt. Photonics.2011. Vol. 3, № 1. P. 1–52.13.Chen H. et al. A multimodal platform for nonlinear optical microscopy andmicrospectroscopy // Opt. Express. 2009. Vol. 17, № 3. P. 1282–1290.14.Sassen K. The Polarization Lidar Technique for Cloud Research: A Review and CurrentAssessment // Bull. Am. Meteorol. Soc. 1991. Vol.
72, № 12. P. 1848–1866.15.Reutebuch S.E., Andersen H.-E., McGaughey R.J. Light Detection and Ranging(LIDAR): An Emerging Tool for Multiple Resource Inventory // J. For. 2005. Vol. 103,№ 6. P. 286–292.16.Wallin S. et al. Laser-based standoff detection of explosives: a critical review // Anal.Bioanal. Chem. 2009. Vol. 395, № 2. P. 259–274.- 179 17.Скворцов Л.А. Лазерные методы обнаружения следов взрывчатых веществ наповерхностях удаленных объектов // Квантовая Электроника.
2012. Vol. 42, № 1. P.1–11.18.Bremer M.T. et al. Highly selective standoff detection and imaging of trace chemicals ina complex background using single-beam coherent anti-Stokes Raman scattering // Appl.Phys. Lett. 2011. Vol. 99, № 10. P. 101109.19.Wille H. et al.
Teramobile: A mobile femtosecond-terawatt laser and detection system //Eur. Phys. J. Appl. Phys. 2002. Vol. 20, № 3. P. 183–190.20.Dogariu A. et al. High-Gain Backward Lasing in Air // Science. 2011. Vol. 331, № 6016.P. 442–445.21.Traverso A.J. et al. Coherence brightened laser source for atmospheric remote sensing //Proc. Natl.
Acad. Sci. 2012. Vol. 109, № 38. P. 15185–15190.22.Luo Q., Liu W., Chin S.L. Lasing action in air induced by ultra-fast laser filamentation //Appl. Phys. B. 2003. Vol. 76, № 3. P. 337–340.23.Dogariu A., Miles R.B. Nitrogen lasing in air // CLEO 2013. Optical Society of America,2013. P. QW1E.1.24.Kartashov D. et al. Free-space nitrogen gas laser driven by a femtosecond filament //Phys. Rev. A. 2012. Vol. 86, № 3.25.Hemmer P.R.
et al. Standoff spectroscopy via remote generation of a backwardpropagating laser beam // Proc. Natl. Acad. Sci. 2011. Vol. 108, № 8. P. 3130–3134.26.Kocharovsky V. et al. Gain-swept superradiance applied to the stand-off detection oftrace impurities in the atmosphere // Proc. Natl. Acad. Sci. 2005. Vol. 102, № 22.
P.7806–7811.27.Steinmeyer G. et al. Frontiers in Ultrashort Pulse Generation: Pushing the Limits inLinear and Nonlinear Optics // Science. 1999. Vol. 286, № 5444. P. 1507–1512.28.Keller U. et al. Femtosecond pulses from a continuously self-starting passively modelocked Ti:sapphire laser // Opt. Lett. 1991.
Vol. 16, № 13. P. 1022–1024.29.Krausz F. et al. Femtosecond solid-state lasers // IEEE J. Quantum Electron. 1992. Vol.28, № 10. P. 2097–2122.30.Spence D.E., Kean P.N., Sibbett W. 60-fsec pulse generation from a self-mode-lockedTi:sapphire laser // Opt. Lett. 1991. Vol. 16, № 1. P. 42–44.31.Maine P.
et al. Generation of ultrahigh peak power pulses by chirped pulse amplification// IEEE J. Quantum Electron. 1988. Vol. 24, № 2. P. 398–403.32.Rudd J.V. et al. Chirped-pulse amplification of 55-fs pulses at a 1-kHz repetitionrate in aTi:Al2O3 regenerative amplifier // Opt. Lett. 1993. Vol. 18, № 23.
P. 2044–2046.- 180 33.Norris T.B. Femtosecond pulse amplification at 250 kHz with a Ti:sapphireregenerativeamplifier and application to continuum generation // Opt. Lett. 1992. Vol. 17, № 14. P.1009–1011.34.Oraevsky A.A. et al. Plasma mediated ablation of biological tissues with nanosecond-tofemtosecond laser pulses: relative role of linear and nonlinear absorption // Sel. Top.Quantum Electron.
IEEE J. Of. 1996. Vol. 2, № 4. P. 801–809.35.Vogel A. et al. Mechanisms of femtosecond laser nanosurgery of cells and tissues // Appl.Phys. B. 2005. Vol. 81, № 8. P. 1015–1047.36.Zumbusch A., Holtom G.R., Xie X.S. Three-dimensional vibrational imaging by coherentanti-Stokes Raman scattering // Phys. Rev. Lett. 1999. Vol. 82, № 20. P. 4142–4145.37.Cheng J.-X., Xie X.S.
Coherent Anti-Stokes Raman Scattering Microscopy: Instrumentation, Theory, and Applications // J. Phys. Chem. B. 2004. Vol. 108, № 3. P.827–840.38.Evans C.L. et al. Chemical imaging of tissue in vivo with video-rate coherent anti-StokesRaman scattering microscopy // Proc. Natl. Acad. Sci. U. S. A. 2005. Vol. 102, № 46. P.16807–16812.39.Volkmer A. Vibrational imaging and microspectroscopies based on coherent anti-StokesRaman scattering microscopy // J. Phys. Appl.
Phys. 2005. Vol. 38, № 5. P. R59.40.Potma E.O., de Boeij W.P., Wiersma D.A. Nonlinear coherent four-wave mixing inoptical microscopy // J. Opt. Soc. Am. B. 2000. Vol. 17, № 10. P. 1678–1684.41.Райнтжес Д. Нелинейные оптические параметрические процессы в жидкостях игазах. Мир, 1987. 512 p.42.Ploetz E. et al. Femtosecond stimulated Raman microscopy // Appl. Phys. B. 2007. Vol.87, № 3. P. 389–393.43.Freudiger C.W. et al.
Label-Free Biomedical Imaging with High Sensitivity byStimulated Raman Scattering Microscopy // Science. 2008. Vol. 322, № 5909. P. 1857–1861.44.Nandakumar P., Kovalev A., Volkmer A. Vibrational imaging based on stimulatedRaman scattering microscopy // New J. Phys. 2009. Vol.
11, № 3. P. 033026.45.Saar B.G. et al. Video-Rate Molecular Imaging in Vivo with Stimulated RamanScattering // Science. 2010. Vol. 330, № 6009. P. 1368–1370.46.Moreaux L., Sandre O., Mertz J. Membrane imaging by second-harmonic generationmicroscopy // J. Opt. Soc. Am. B.
2000. Vol. 17, № 10. P. 1685–1694.47.Zipfel W.R. et al. Live tissue intrinsic emission microscopy using multiphoton-excitednative fluorescence and second harmonic generation // Proc. Natl. Acad. Sci. 2003. Vol.100, № 12. P. 7075–7080.- 181 48.Barad Y. et al. Nonlinear scanning laser microscopy by third harmonic generation //Appl. Phys.
Lett. 1997. Vol. 70, № 8. P. 922–924.49.Yelin D., Silberberg Y. Laser scanning third-harmonic-generation microscopy in biology// Opt. Express. 1999. Vol. 5, № 8. P. 169–175.50.Squier J. et al. Third harmonic generation microscopy // Opt. Express. 1998. Vol.
3, № 9.P. 315–324.51.Witte S. et al. Label-free live brain imaging and targeted patching with third-harmonicgeneration microscopy // Proc. Natl. Acad. Sci. 2011. Vol. 108, № 15. P. 5970–5975.52.McClelland A., Chen Z. Sum Frequency Generation Spectroscopy // Encycl. Anal. Chem.John Wiley & Sons, Ltd, 2006.53.Baldelli S., Schnitzer C., Simonelli D. Aqueous Solution/Air Interfaces Probed with SumFrequency Generation Spectroscopy // J. Phys. Chem. B. 2002.
Vol. 106, № 21. P. 5313–5324.54.Shultz M.J. et al. Sum frequency generation spectroscopy of the aqueous interface: Ionicand soluble molecular solutions // Int. Rev. Phys. Chem. 2000. Vol. 19, № 1. P. 123–153.55.Hartland G.V. Ultrafast studies of single semiconductor and metal nanostructures throughtransient absorption microscopy // Chem. Sci. 2010. Vol. 1, № 3. P. 303.56.Ye T., Fu D., Warren W.S.
Nonlinear Absorption Microscopy† // Photochem. Photobiol.2009. Vol. 85, № 3. P. 631–645.57.Denk W., Strickler J.H., Webb W.W. Two-photon laser scanning fluorescencemicroscopy // Science. 1990. Vol. 248, № 4951. P. 73–76.58.Helmchen F., Denk W. Deep tissue two-photon microscopy // Nat. Methods. 2005. Vol.2, № 12. P. 932–940.59.Horton N.G. et al. In vivo three-photon microscopy of subcortical structures within anintact mouse brain // Nat. Photonics. 2013. Vol. 7, № 3. P. 205–209.60.Hell S.W., Wichmann J.
Breaking the diffraction resolution limit by stimulated emission:stimulated-emission-depletion fluorescence microscopy // Opt. Lett. 1994. Vol. 19, № 11.P. 780–782.61.Willig K.I. et al. STED microscopy resolves nanoparticle assemblies // New J. Phys.2006. Vol. 8, № 6. P. 106–106.62.Rittweger E. et al. STED microscopy reveals crystal colour centres with nanometricresolution // Nat. Photonics. 2009. Vol. 3, № 3. P. 144–147.63.Wang J.W. et al. Two-Photon Calcium Imaging Reveals an Odor-Evoked Map ofActivity in the Fly Brain // Cell. 2003. Vol. 112, № 2. P.















