Диссертация (1103241), страница 17
Текст из файла (страница 17)
С. 810–812.65. Sawyer D.T., Roberts J.L. Electrochemistry of oxygen and superoxide ion indimethylsulfoxide at platinum, gold and mercury electrodes // J. Electroanal. Chem. 1966. Т. 12.№ 2. С. 90–101.66. Maricle D.L., Hodgson W.G. Reducion of Oxygen to Superoxide Anion in AproticSolvents. // Anal. Chem. 1965. Т. 37. № 12.
С. 1562–1565.67. Toni J.E.A. Linear Sweep Studies of the Oxygen Electrode in Nonaqueous MediaKinetics Studies on Smooth Platinum Electrodes С. 212–217.68. Peover M.E., White B.S. The formation of the superoxide ion by electrolysis of oxygenin aprotic solvents // Chem. Commun. 1965. Т. 11. № 10. С. 183.69. Laoire C.O. и др. Elucidating the mechanism of oxygen reduction for lithium-airbattery applications // J. Phys. Chem. C. 2009. Т. 113. № 46.
С. 20127–20134.70. Andrieux C.P., Hapiot P., Saveant J.M. Mechanism of superoxide iondisproportionation in aprotic solvents // J. Am. Chem. Soc. 1987. Т. 109. № 12. С. 3768–3775.71. Herranz J., Garsuch A., Gasteiger H.A. Using Rotating Ring Disc ElectrodeVoltammetry to Quantify the Superoxide Radical Stability of Aprotic Li–Air Battery Electrolytes// J. Phys. Chem. C. 2012. Т.
116. № 36. С. 19084–19094.11572. Johnson E.L., Pool K.H., Hamm R.E. Polarographic Reduction of Oxygen inDimethylsulfoxide // Anal. Chem. 1966. Т. 38. № 2. С. 183–185.73. Abraham K.M. Electrolyte-Directed Reactions of the Oxygen Electrode in Lithium-AirBatteries // J. Electrochem. Soc. 2014. Т. 162. № 2. С. A3021–A3031.74. Lu Y.-C. и др. Electrocatalytic Activity Studies of Select Metal Surfaces andImplications in Li-Air Batteries // J.
Electrochem. Soc. 2010. Т. 157. № 9. С. A1016.75. Yang J. и др. Evidence for lithium superoxide-like species in the discharge product ofa Li–O2 battery // Phys. Chem. Chem. Phys. 2013. Т. 15. № 11. С. 3764.76. Zhai D. и др. Raman Evidence for Late Stage Disproportionation in a Li–O 2 Battery// J. Phys. Chem. Lett.
2014. Т. 5. № 15. С. 2705–2710.77. Trahan M.J. и др. Studies of Li-Air Cells Utilizing Dimethyl Sulfoxide-BasedElectrolyte // J. Electrochem. Soc. 2013. Т. 160. № 2. С. A259–A267.78. Xia C. и др. Evolution of Li 2 O 2 Growth and Its Effect on Kinetics of Li–O 2 Batteries// ACS Appl. Mater. Interfaces. 2014. Т. 6. № 15. С. 12083–12092.79. Black R. и др. Screening for Superoxide Reactivity in Li-O 2 Batteries: Effect on Li 2O 2 /LiOH Crystallization // J.
Am. Chem. Soc. 2012. Т. 134. № 6. С. 2902–2905.80. Zakharchenko T.K. и др. Lithium peroxide crystal clusters as a natural growth featureof discharge products in Li–O 2 cells // Beilstein J. Nanotechnol. 2013. Т. 4. С. 758–762.81. Allen C.J. и др. Oxygen Electrode Rechargeability in an Ionic Liquid for the Li - AirBattery // J. Phys. Chem. Lett. 2011. Т. 2. С. 2420–2424.82.
Pearson R.G. Hard and Soft Acids and Bases // J. Am. Chem. Soc. 1963. Т. 85. № 22.С. 3533–3539.83. Adams B.D. и др. Current density dependence of peroxide formation in the Li–O2battery and its effect on charge // Energy Environ. Sci. 2013. Т. 6.
С. 1772.84. Mitchell R.R. и др. Mechanisms of Morphological Evolution of Li 2 O 2 Particlesduring Electrochemical Growth // J. Phys. Chem. Lett. 2013. Т. 4. № 7. С. 1060–1064.85. Gallant B.M. и др. Influence of Li2O2 morphology on oxygen reduction and evolutionkinetics in Li–O2 batteries // Energy Environ. Sci. 2013. Т. 6. № 8. С. 2518.86. Kwabi D.G. и др. Chemical Instability of Dimethyl Sulfoxide in Lithium–Air Batteries// J.
Phys. Chem. Lett. 2014. Т. 5. № 16. С. 2850–2856.87. Aetukuri N.B. и др. Solvating additives drive solution-mediated electrochemistry and116enhance toroid growth in non-aqueous Li–O2 batteries // Nat. Chem. 2014. Т. 7. № 1. С. 50–56.88. Tan P.
и др. Morphology of the Discharge Product in Non-aqueous Lithium-OxygenBatteries: Furrowed Toroid Particles Correspond to a Lower Charge Voltage // Energy Technol.2016. Т. 4. № 3. С. 393–400.89. Wang Z.-L. и др. Graphene Oxide Gel-Derived, Free-Standing, Hierarchically PorousCarbon for High-Capacity and High-Rate Rechargeable Li-O2 Batteries // Adv. Funct. Mater.2012. Т. 22.
№ 17. С. 3699–3705.90. Nakanishi S. и др. Influence of the carbon surface on cathode deposits in non-aqueousLi–O2 batteries // Carbon N. Y. 2012. Т. 50. № 13. С. 4794–4803.91. Newman J., Thomas-Alyea K.E. Electrochemical systems. New Jersey: John Wiley &Sons, 2012. Вып. 3й.92. Sandhu S.S., Fellner J.P., Brutchen G.W.
Diffusion-limited model for a lithium/airbattery with an organic electrolyte // J. Power Sources. 2007. Т. 164. № 1. С. 365–371.93. Andrei P. и др. Some Possible Approaches for Improving the Energy Density of LiAir Batteries // J. Electrochem. Soc. 2010. Т. 157. № 12.
С. A1287.94. Chung D.-W. и др. Validity of the Bruggeman relation for porous electrodes // Model.Simul. Mater. Sci. Eng. 2013. Т. 21. № 7. С. 74009.95. Ebner M. и др. Tortuosity Anisotropy in Lithium-Ion Battery Electrodes // Adv. EnergyMater. 2014. Т. 4. № 5. С. 1301278.96. Li X., Faghri A. Optimization of the Cathode Structure of Lithium-Air Batteries Basedon a Two-Dimensional, Transient, Non-Isothermal Model // J. Electrochem. Soc. 2012. Т.
159. №10. С. A1747–A1754.97. Wang Y., Cho S.C. Analysis and Multi-Dimensional Modeling of Lithium-AirBatteries // J. Electrochem. Soc. 2015. Т. 162. № 1. С. A114–A124.98. Sahapatsombut U., Cheng H., Scott K. Modelling the micro–macro homogeneouscycling behaviour of a lithium–air battery // J. Power Sources. 2013.
Т. 227. С. 243–253.99. Nimon V.Y. и др. Modeling and Experimental Study of Porous Carbon Cathodes inLi-O2 Cells with Non-Aqueous Electrolyte // ECS Electrochem. Lett. 2013. Т. 2. № 4. С. A33–A35.100. Ren Y.X. и др. Modeling of an aprotic Li-O2 battery incorporating multiple-stepreactions // Appl. Energy. 2017. Т. 187. С. 706–716.117101. Xue K.-H. и др. A Comprehensive Model for Non-Aqueous Lithium Air BatteriesInvolving Different Reaction Mechanisms // J. Electrochem.
Soc. 2015. Т. 162. № 4. С. A614–A621.102. Chen X.J. и др. Combined Effects of Oxygen Diffusion and Electronic Resistance inLi-Air Batteries with Carbon Nanofiber Cathodes // J. Electrochem. Soc. 2014. Т. 161. № 12. С.1877–1883.103. Bevara V., Andrei P. Changing the Cathode Microstructure to Improve the Capacityof Li-Air Batteries: Theoretical Predictions // J. Electrochem. Soc. 2014. Т.
161. № 14. С. A2068–A2079.104. Wang Y. Modeling discharge deposit formation and its effect on lithium-air batteryperformance // Electrochim. Acta. 2012. Т. 75. С. 239–246.105. Xue K.-H.H., Nguyen T.-K.K., Franco a. a. Impact of the Cathode Microstructure onthe Discharge Performance of Lithium Air Batteries: A Multiscale Model // J. Electrochem. Soc.2014. Т. 161.
№ 8. С. E3028–E3035.106. Ding N. и др. In fl uence of carbon pore size on the discharge capacity of Li – O 2batteries † // 2014. С. 12433–12441.107. Bao J. и др. Discharge Performance of Li-O 2 Batteries Using a Multiscale ModelingApproach // J. Phys. Chem. C. 2015.
С. 150610045358000.108. Mehta M., Zhu C., Andrei P. Statistical Analysis of Li-Oxygen Batteries // ECS Trans.2017. Т. 75. № 22. С. 35–45.109. Xu Y., Shelton W. a. Oxygen Reduction by Lithium on Model Carbon and OxidizedCarbon Structures // J. Electrochem. Soc. 2011. Т. 158. № 10. С. A1177–A1184.110. Hummelsho̸j J.S., Luntz a. C., No̸rskov J.K. Theoretical evidence for low kineticoverpotentials in Li-O2 electrochemistry // J. Chem. Phys.
2013. Т. 138. № 3. С. 34703.111. Bryantsev V.S. Calculation of solvation free energies of Li+ and O2 − ions and neutrallithium–oxygen compounds in acetonitrile using mixed cluster/continuum models // Theor. Chem.Acc. 2012. Т. 131. № 7. С. 1250.112. Kwabi D.G. и др. Experimental and Computational Analysis of the SolventDependent O 2 /Li + -O 2 − Redox Couple: Standard Potentials, Coupling Strength, andImplications for Lithium-Oxygen Batteries // Angew. Chemie Int. Ed.















