Диссертация (1103131), страница 16
Текст из файла (страница 16)
– 2015. - V. 24.- 053001 (39 p).2. MсTaggart F. K. Plasma Chemistry in Electrical Discharges (Amsterdam: Elsevier) 1967.3. Двинин С. А., Довженко В. А., Солнцев Г. С. Ионизационная неустойчивость плазмы,связанная с поверхностной волной и ее влияние на структуру стационарного СВЧразряда // Физика плазмы. — 1982. — Т. 8. - № 6. — С. 1228–1235.4.
Fehsenfeld F. C., Evenson K. M. and Broida H. P. Microwave Discharge Cavities Operatingat 2450 MHz // Rev. Sci. lnstr. – 1965. - V. 36. - № 3. - P. 294.5. Asmussen J., Mallavarpu R., Hamann, J.R. and Park H.C. The Design of a MicrowavePlasma Cavity // Proceedings of the IEEE. - 1974. - V. 62. - №.
1. - P. 109 - 117.6. Moisan M., Beaudry C., Leprince P. A new HF device for the production of long plasmacolumns at a high electron density // Phys. Lett. – 1974. V. 50A. - P. 125 – 126.7. Wertheimer M R , Moisan M. Z. Processing of electronic materials by microwave plasma//Pure Appl. Chem. -1994 V.66. p. 1343.8. Bosisio R. G., Weissfloch C. F. and Wertheimer M. R. The large volume microwave plasmagenerator (LMP): a new tool for research and industrial processing // J.
Microwave power. –1972. - V. 7.- P. 325 – 346.9. Bosisio R. G., Nachman M. and Spooner J. Power Absorption in High Power MicrowaveDischarges // IEEE Trans. Plasma Sci. – 1974. – V. 2. - Issue 4. – P. 273.10. Bosisio R. G., Wertheimer M. R. and Weissfloch C. F. Generation of large volumemicrowave plasmas // J. Phys. E: Sci. Instrum. – 1973.
- V. 6. – P. 628.11. Wu T. J. and Kou C. S. A large-area plasma source excited by a tunable surface wave cavity.// Rev. Sci. Instrum. – 1999. - V.- 70. - P. 2331.12. Korzec D., Werner F., Winter R. and Engemann J. Scaling of microwave slot antenna(SLAN): a concept for efficient plasma generation // Plasma Sources Sci. Technol. - 1996. V. 5. - P.
216.13. Vikharev A. L. and Ivanov O. A. 2005 Encyclopedia of Low-Temperature Plasma (Ed inChief Fortov V.E.: Series B. Thematic volume VIII-I: Chemistry of Low TemperaturePlasma) ed Lebedev Yu.A. et al (Moscow: Yanus-K) pp 356 –434.
(in Russian)14. Esakov I. I., Grachev L. P., Khodataev K. V. and Van Wie D. M. Microwave Discharge inQuasi-optical Wave Beam // 45th AIAA Aerospace Sciences Meeting AIAA. – 2007 – 433.10415. Brovkin V. G., Kolesnichenko Yu. F. Antenna-tipe initiators and low-threshold microwaveball discharges.
// Tech. Phys. - 1994. - V. 39 (2). - P. 222.16. Grachev L. P., Esakov I. I., Lavrov P. V. and Ravaev A. A .Induced Field of anElectromagnetic Vibrator above a Conducting Screen Placed in a Microwave Beam // Tech.Phys. – 2012. - V. 57.
- P. 230-235.17. Lebedev Yu. A., Mokeev M. V., Tatarinov A. V., Shakhatov V. A. and Epstein I. L. 2008.Physics and microstructure of electrode microwave discharge // J. Phys. D: Appl. Phys. –2008. - V.41. – 194001.18. Klemberg-Sapieha J. E., Kuttel O. M., Martinu L. and Wertheimer M. R. Dual microwaver.f. plasma deposition of functional coatings. // Thin Solid Films. – 1990. - V. 193–194. - P.965 – 972.19. Kuttel O. M., Klemberg-Sapieha J. E., Martinu L. and Wertheimer M. R.
Energy fluxes inmixed microwave-r.f. plasma // Thin Solid Films. – 1990. - V.193–194. - P. 155 – 163.20. Microwave Excited Plasmas. Ed M Moisan and J Pelletier (Amsterdam: Elsevier) 199221. Balmashnov A.A., Kalashnikov A.V., Kalashnikov V.V., Stepina S.P., UmnovA.M. Generation of the Electric Field Pulsating at 2.45 GHz in the CERA-RX(C) ElectronCyclotron Resonance Source and Its Influence on X-ray Generation Efficiency».
// Pla maPhysics Reports. 2013. -V.39.- P .1140 - 114322. Rau H. Monte Carlo simulation of a microwave plasma in hydrogen // J. Phys. D: Appl.Phys. – 2000. – V. 33. – P. 3214–3222.23. Longo S. Monte Carlo models of electron and ion transport in non-equilibrium plasmas //Plasma Sources Sci. Technol. – 2000. – V. 9. – P. 468–476.24. Yousfi M., Hennad A., and Alkaa A. Monte Carlo simulation of electron swarms at lowreduced electric fields // Physical Review E. – 1994. – V. 49. - № 4. – 1994.25.
Birdsall C.K. Particle-in-cell charged-particle simulations, plus Monte Carlo collisions withneutral atoms, PIC-MCC // IEEE Trans. Plasma Sci. – 1991. – V.19. – P. 65 – 85.26. Donko Z., Hartmann P. and Kutasi K. On the reliability of low-pressure dc glowdischargemodeling // Plasma Sources Sci. Technol. – 2006. – V.15. – P.
178–186.27. Chernov V.V., Gorbachev A.M., Vikharev A.L., Radishev D.B., Kozlov A.V. Continuousmicrowave discharge maintained by two crossing millimeter-wave beams in hydrogen andargon. Numerical simulation and experiment // Plasma Sources, Science and Technology. –2015 – V. 25. - № 6. – 065022.28.
Boeuf J.P., Merad A.. Fluid and Hybrid Models of Non-Equilibrium Discharges // PlasmaProcessing of Semiconductors NATO ASI Series E. Applied Sciences (P. F. Williams, ed.). –1997. - V. 336. - P. 291 - 320. Kluwer Academic.10529. Лебедев Ю. А, Эпштейн И. Л. Квазистатическое моделирование микроволновогоразряда в азоте в системе электродов со сферической симметрией // Физика плазмы2007 - Т. 33 - C.68-76.30. Henriques J., Tatarova E., Guerra V., Ferreira C. M. Wave driven N2-Ar discharge. Selfconsistent theoretical model // Journal of applied physics.
– 2002. - V. – 91. - P. 5622 – 5631.31. Bogaerts A., Gijbels F.L. Hybrid Monte Carlo-fluid model of a direct current glow discharge// J. Appl. Phys. – 1995. - V. 78 (4). - P. 2233.32. Sommerer T.J. and Kushner M.J. Numerical Investigation of the Kinetics and Chemistry ofRF Glow Discharge Plasmas Sustained in He, N2, O2, He/N2/O2, He/CF4/O2, and SiH4/NH3Using a Monte Carlo-Fluid Hybrid Model // J. Appl.
Phys. – 1992. - V. 71. - P. 1654.33. Fiala A., Pitchford L.C., and Boeuf J.P. Two-dimensional, hybrid model of low-pressureglow discharges // Phys. Rev. E. – 1994. – V. 49. – P. 5607.34. Boeuf J.P. and Pitchford L.C., Pseudospark discharges via computer simulation // IEEETrans. Plasma Sci. – 1991. - V. 19. - № 2.
- P. 286 – 296.35. Morgan L., Vriens L. Two-electron-group model and Boltzmann calculations for lowpressure gas discharges // J. Appl. Phys. – 1980. – V. 51. – P. 5300.36. Bechu S., Soum-Glaude A., Be`s A., Lacoste A., Svarnas P., Aleiferis S., Ivanov Jr.A., BacalM. Multi-dipolar microwave plasmas and their application to negative ion production //Physics of plasmas. – 2013. – V. 20. – 101601.37. Gitlin M.S., Epstein I.L., Lebedev Yu.A. Modelling of the positive column of a mediumpressure Cs–Xe dc discharge affected by a millimeter wave pulse // J. Phys. D: Appl. Phys.
–2013. – V. 46. – 415208.38. Шкаровский И., Джонстон Т., Бачинский М. Кинетика частиц плазмы. М.: Атомиздат,196939. Hagelaar G.J.M. and Pitchford L.C. Solving the Boltzmann equation to obtain electrontransport coefficients and rate coefficients for fluid models // Plasma Sources Sci. Techn. –2005. - V. 14. – P. 722-733.40. Morgan database, www.lxcat.net, retrieved on August 29. - 201441. Лебедев Ю.А. Электродный СВЧ-разряд и его применения // Энциклопедиянизкотемпературной плазмы. – 2005. - Т. 7 - 1, С.
435 - 462. Москва Янус-К.42. Tatarinov A. V., Cvejic M., Epstein I.L., Jovicevic S., Konjevic, N., Lebedev, Yu. A. Thestudy of a homogeneous column of argon plasma at a pressure of 0.5 torr, generated bymean of the Beenakker’ cavity // Eur. Phy . J. .
– 2014. – V. 68. – 334.10643. Hassouni K., Grotjohn T. A., Gicquel A. Self-consistent microwave field and plasmadischarge simulations for a moderate pressure hydrogen discharge reactor // J. Appl. Phys. –1999. - V. 86. - № 1. - P. 134 – 148.44. Шахатов В.А., Лебедев Ю.А. Столкновительно-излучательная модель водороднойнизкотемпературной плазмы. Процессы и сечения столкновений электронов смолекулами // Теплофизика высоких температур. – 2011.
- Т. 49. - № 2. - С.265 – 309.45. Lebedev Yu.A., Shakhatov V.A., Epstein I.L., Kinetic models of nonequilibrium nitrogenand hydrogen plasma for diagnostics of gas discharges /// Third International Workshop &Summer School on Plasma Physics 2008, IPO Publishing, Journal of Physics: ConferenceSeries 207 (2010) 012001, doi:10.1088/1742-6596/207/1/01200146.
Дятко Н.А., Ионих Ю.З., Мещанов А.В., Напартович А.П., Барзилович К.А.Особенности вольтамперных характеристик диффузионной формы тлеющего разряда всмесях Ar:N2 плазмы // Физика плазмы. – 2010. – Т.36. – С. 1104 – 1129.47. Dyatko N.A., Ionikh Y.Z., Kochetov I.V., Marinov D.L., Meshchanov A.V., NapartovichA.V., Petrov F.B., Starostin S.A. Experimental and theoretical study of the transitionbetween diffuse and contracted forms of the glow discharge in argon // J.Phys.D: Appl.
Phys.– 2008. – V. 41. – 055204.48. Каччиоторе М., Капителли М., де Бенедиктис С., Дилонардо М., Горсе К.Колебательная кинетика, диссоциация и ионизация двухатомных молекул внеравновесных условиях. В сб. Неравновесная колебательная кинетика, М. Мир, 198949. Garscadden A., Nagpal R. Non-equilibrium electronic and vibrational kinetics in H2-N2 andH2 discharges // Plasma Sources Sci.
Technol. -1995. – V. 4. – P. 268 – 280.50. Loureiro J., Ferreira C.M. Coupled electron energy and vibrational distribution functions instationary N2 discharges // J.Phys.D: Appl. Phys. – 1986. – V.19. – P. 17 – 35.51. Guerra V., Tatarova E., Dias F. M., Ferreira C. M. On the self-consistent modeling of atraveling wave sustained nitrogen discharge // J.Appl.Phys. – 2002. – V.















