Диссертация (1103090), страница 21
Текст из файла (страница 21)
9428.80. Measurement and interpretation of electrokinetic phenomena / A. Delgado [et al.] // J. Colloid Interface Sci. — 2007. — Vol. 309, no. 2. — Pp. 194–224.81. Squires T. M., Quake S. R. Microfluidics: Fluid physics at the nanoliter scale // Rev. Mod.Phys. — 2005. — Vol. 77. — Pp. 977–1026.82. Eijkel J. C.
T., van den Berg A. Nanofluidics: what is it and what can we expect from it? //Microfluid Nanofluid. — 2005. — Vol. 1. — Pp. 249–267.83. Electrokinetically driven deterministic lateral displacement for particle separation in microfluidic devices / S. Hanasoge [et al.] // Microfluid. Nanofluid. — 2015.
— Vol. 18, 5-6. —Pp. 1195–1200.84. Electrokinetically controlled microfluidic analysis systems / L. Bousse [et al.] // Annu. Rev.Biophys. Biomol. Struct. — 2000. — Vol. 29, no. 1. — Pp. 155–181.85. Whitesides G. M. The origins and the future of microfluidics // Nature. — 2006. — Т. 442,№ 7101. — С. 368—373.86. Stone H., Stroock A., Ajdari A. Engineering Flows in Small Devices // Annu. Rev.
FluidMech. — 2004. — Vol. 36, no. 1. — Pp. 381–411.87. Vinogradova O. I. Slippage of water over hydrophobic surfaces // Int. J. Miner. Proc. —1999. — Vol. 56. — Pp. 31–60.88. Bocquet L., Charlaix E. Nanofluidics, from bulk to interfaces // Chem. Soc. Rev. — 2010. —Vol. 39.
— Pp. 1073–1095.89. Vinogradova O. I. Drainage of a thin liquid film confined between hydrophobic surfaces //Langmuir. — 1995. — Vol. 11. — Pp. 2213–2220.90. Andrienko D., Dünweg B., Vinogradova O. I. Boundary slip as a result of a prewetting transition // J. Chem. Phys. — 2003. — Vol. 119. — P.
13106.10291. Dammer S. M., Lohse D. Gas enrichment at liquid-wall interfaces // Phys. Rev. Lett. —2006. — Vol. 96. — P. 206101.92. Interfacial water at hydrophobic and hydrophilic surfaces: slip, viscosity, and diffusion / C.Sendner [et al.] // Langmuir.
— 2009. — Vol. 25. — Pp. 10768–10781.93. Electrokinetic energy conversion efficiency in nanofluidic channels / F. H. J. Van der Heyden [et al.] // Nano lett. — 2006. — Vol. 6, no. 10. — Pp. 2232–2237.94. Smoluchowski M. V. Handbuch der Elektrizitaet und des Magnetismus. Vol. 2. — Leipzig :Johann Ambrosius Barth, 1918.95.
Boundary effects in the theory of electrokinetic phenomena / V. M. Muller [et al.] // ColloidJ. USSR. — 1986. — Vol. 48. — Pp. 606–614.96. Hydrodynamics within the electric double layer on slipping surfaces / L. Joly [et al.] // Phys.Rev. Lett. — 2004. — Vol. 93.
— P. 257805.97. Zeta potential and electroosmotic mobility in microfluidic devices fabricated from hydrophobic polymers: 1. The origins of charge / V. Tandon [et al.] // Electrophoresis. —2008. — Vol. 29. — Pp. 1092–1101.98. Pushkarova R. A., Horn R. G. H. Bubble-solid interactions in water and electrolyte solutions // Langmuir. — 2008.
— Vol. 24. — Pp. 8726–8734.99. Simulation and theory of ions at atmospherically relevant aqueous liquid-air interfaces / D. J.Tobias [et al.] // Annu. Rev. Phys. Chem. — 2013. — Vol. 64, no. 1. — Pp. 339–359.100. Ion-Specific anomalous electrokinetic effects in hydrophobic nanochannels / D. M.
Huang[et al.] // Phys. Rev. Lett. — 2007. — Vol. 98. — P. 177801.101. Shchekin A. K., Borisov V. V. Thermodynamics of Nucleation on the Particles of Salts-StrongElectrolytes: The Allowance for Ion Adsorption in the Droplet Surface Layer // Colloid J. —2005. — Vol. 67, no. 6. — Pp. 774–787.102. Maxwell stress generated long wave instabilities in a thin aqueous film under time-dependentelectro-osmotic flow / M.
Mayur [et al.] // Microfluid. Nanofluid. — 2016. — Vol. 20, no.4. — P. 60.103. Electrokinetic instability of liquid micro- and nanofilms with a mobile charge / G. S.Ganchenko [et al.] // Phys. Fluid. — 2015. — Vol. 27, no. 6. — P. 062002.104. Strong specific hydroxide ion binding at the pristine oil/water and air/water interfaces / P.Creux [et al.] // J. Phys. Chem. B. — 2009. — Vol. 113. — Pp. 14146–14150.105. Charging of oil− water interfaces due to spontaneous adsorption of hydroxyl ions / K. G.Marinova [et al.] // Langmuir. — 1996. — Vol.
12. — Pp. 2045–2051.106. Takahashi M. ζ potential of microbubbles in aqueous solutions: electrical properites of thegas-water interface // J. Phys. Chem. B. — 2005. — Vol. 109. — Pp. 21858–21864.103107. A mechanical-electrokinetic battery using a nano-porous membrane / M.-C.
Lu [et al.] // J.Micromech. Microeng. — 2006. — Vol. 16, no. 4. — P. 667.108. High electrokinetic energy conversion efficiency in charged nanoporous nitrocellulose/sulfonated polystyrene membranes / S. Haldrup [et al.] // Nano lett. — 2015. — Vol. 15, no.2. — Pp. 1158–1165.109.
Tailoring membrane nano-structure and charge density for high electrokinetic energy conversion efficiency / S. Haldrup [et al.] // ACS Nano. — 2016.110. Laser D. J., Santiago J. G. A Review of micropumps // J. Micromech. Microeng. — 2004. —Vol. 14, no. 6. — R35.111. Li L., Mo J., Li Z. Nanofluidic diode for simple fluids without moving parts // Phys. Rev.Lett.
— 2015. — Vol. 115, issue 13. — P. 134503.112. Daiguji H., Oka Y., Shirono K. Nanofluidic diode and bipolar transistor // Nano Lett. —2005. — Vol. 5, no. 11. — Pp. 2274–2280.113. Tangential flow streaming potential measurements: Hydrodynamic cell characterization andzeta potentials of carboxylated polysulfone membranes / D. Möckel [et al.] // J. Memb.Sci. — 1998. — Vol. 145, no. 2. — Pp.
211–222.114. Gu Y., Li D. The ζ-potential of glass surface in contact with aqueous solutions // J. ColloidInterface Sci. — 2000. — Vol. 226, no. 2. — Pp. 328–339.115. Jednačak J., Pravdić V., Haller W. The electrokinetic potential of glasses in aqueous electrolyte solutions // J. Colloid Interface Sci. — 1974. — Vol. 49, no. 1. — Pp.
16–23.116. Burgreen D., Nakache F. Electrokinetic flow in ultrafine capillary slits1 // J. Phys. Chem. —1964. — Vol. 68, no. 5. — Pp. 1084–1091.117. Rectification of ionic current in a nanofluidic diode / R. Karnik [et al.] // Nano lett. —2007. — Vol. 7, no. 3. — Pp. 547–551.118. Bonthuis D. J., Netz R. R. Unraveling the combined effects of dielectric and viscosity profiles on surface capacitance, electro-osmotic mobility, and electric surface conductivity //Langmuir.
— 2012. — Vol. 28, no. 46. — Pp. 16049–16059.119. Кинетические явления в граничных пленках жидкостей. Капиллярный осмос / Б. В.Дерягин [и др.] // Коллоид. журн. — 1947. — Т. 9, № 5. — С. 335—348.120. Motion of a particle generated by chemical gradients. Part 2. Electrolytes / D. Prieve [и др.] //J. Fluid Mech. — 1984. — Т. 148. — С. 247—269.121. Anderson J.
L. Colloid transport by interfacial forces // Annu. Rev. Fluid Mech. — 1989. —Vol. 21, no. 1. — Pp. 61–99.104122. Particle manipulation based on optically controlled free surface hydrodynamics / S. N.Varanakkottu [et al.] // Angew. Chem. Int. Ed. — 2013. — Vol. 52, no. 28. — Pp. 7291–7295.123. Pumping-out photo-surfactants from an air–water interface using light / E. Chevallier [идр.] // Soft Matter. — 2011. — Т. 7, № 17. — С.
7866—7874.124. Grier D. G. A revolution in optical manipulation // Nature. — 2003. — Vol. 424, no.6950. — Pp. 810–816.125. Three-dimensional manipulation with scanning near field optical nanotweezers / J. Berthelot[et al.] // Nat. Nano.
— 2014. — Vol. 9. — Pp. 295–299.126. Kremser L., Blaas D., Kenndler E. Capillary electrophoresis of biological particles: viruses,bacteria, and eukaryotic cells // Electrophoresis. — 2004. — Vol. 25, no. 14. — Pp. 2282–2291.127. ESPResSo - an extensible simulation package for research on soft matter systems / H. Limbach [et al.] // Comput. Phys. Commun. — 2006. — Vol. 174, no. 9. — Pp. 704–727.128. Weeks J. D., Chandler D., Andersen H. C. Role of repulsive forces in determining the equilibrium structure of simple liquids // J.
Chem. Phys. — 1971. — Vol. 54, no. 12. — Pp. 5237–5247.129. Hockney R. W., Eastwood J. W. Computer Simulation Using Particles. — Taylor & Francis,1989.130. Grosberg A. Y., Nguyen T. T., Shklovskii B. I. Colloquium: the physics of charge inversionin chemical and biological systems // Rev. Mod. Phys. — 2002. — Vol. 74. — P. 329.131. Levin Y. Electrostatic correlations: from plasma to biology // Rep. Prog. Phys. — 2002. —Vol. 65. — P. 1577.132.
Moreira A. G., Netz R. R. Simulations of counterions at charged plates // Eur. Phys. J. E. —2002. — Vol. 8. — P. 33.133. Weak- and strong-coupling electrostatic interactions between asymmetrically charged planar surfaces / M. Kanduc [et al.] // Phys. Rev. E. — 2008. — Vol. 78, no. 6. — P. 061105.134. Santos A. P. dos, Diehl A., Levin Y. Colloidal charge renormalization in suspensions containing multivalent electrolyte // J. Chem. Phys. — 2010. — Vol. 132. — P.
104105.135. Marcus R. A. Calculation of thermodynamic properties of polyelectrolytes // J. Chem.Phys. — 1955. — Vol. 23, no. 6. — Pp. 1057–1068.136. McCormack D., Carnie S. L., Chan D. Y. Calculations of electric double-Layer force andinteraction free energy between dissimilar surfaces // J. Colloid Interface Sci. — 1995.















