Диссертация (1102398), страница 16
Текст из файла (страница 16)
2006.V. 6, N. 3, p. 179-192.[67] A. B. Kurzhanski, P. Varaiya. Dynamics and Control of Trajectory Tubes. Theory andComputation. Birkhauser, 2014.[68] E. B. Lee, L. Markus. Foundations of optimal control theory. Wiley, 1967.[69] J. Lygeros, C. Tomlin, and S. Sastry. Controllers for reachability specifications for hybridsystems // Automatica. 1999. V. 35. N. 3. p. 349-370.[70] R. R.
Mohler. Nonlinear Systems: v.II Application to Bilinear Control. Prentice Hall,Englewood Cliffs, NJ, 1991.[71] R. M. Murray, Z. Li, and S. S. Sastry. A Mathematical Introduction to Robotic Manipulation.CRC Press, Boca Raton, 1994.[72] S. Osher, R. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces. Springer-Verlag,2002.[73] P. M. Pardalos, V. Yatsenko. Optimization and Control of Bilinear Systems. Springer, 2008.[74] V. S.
Patsko, S. G. Pyatko, and A. A. Fedotov. Three-dimensional Reachability Set for aNonlinear Control System // Journal of Computer And Syst. Sci. Intern., 42(3):320–328,2003.[75] I. V. Roublev. A Numerical Algorithm for Construction of Three-Dimensional Projectionsfor Reachability Sets // Proc. 8th IFAC Symposium Nonlinear Control Systems (NOLCOS2010), p. 993–998, Bologna, 2010.[76] F.
C. Schweppe. Recursive State Estimation: Unknown but Bounded Errors and SystemInputs // IEEE Trans. Aut. Cont. AC-13, 1968.[77] J. A. Sethian. Level Set Methods and Fast Marching Methods. Cambridge Univ. Press, 1999.[78] V. Sinyakov, I. V. Roublev. Approximation of reachability sets for nonlinear unicycle controlsystem using the comparison principle // Proc. 9th IFAC Symposium Nonlinear ControlSystems (NOLCOS 2013), p.
688–692, Toulouse, 2013.115[79] P. E. Souganidis. Approximation Schemes for Viscosity Solutions of Hamilton–JacobiEquations // J. Diff. Eqns. 1989. V. 59, p. 1–43..














