Диссертация (1102290), страница 15
Текст из файла (страница 15)
Ebright, C.L. Lawson. Three-dimensional EM structure of an intact activatordependent transcription initiation complex // Proc. Natl. Acad. Sci. U. S. A., - 2009,- Vol. 106, - P. 19830–19835.[87] J. Adamcik, R. Mezzenga. Adjustable twisting periodic pitch of amyloid fibrils //Soft Matter, - 2011, - Vol. 7, - P.
5437–5443.[88] D.J. Müller, M. Amrein, A. Engel. Adsorption of Biological Molecules to a SolidSupport for Scanning Probe Microscopy // J. Struct. Biol., - 1997, - Vol. 119, - P.172–188.[89] L.A. Munishkina, E.M. Cooper, V.N. Uversky, A.L. Fink. The effect ofmacromolecular crowding on protein aggregation and amyloid fibril formation // J.Mol. Recognit. JMR, - 2004, - Vol.
17, - P. 456–464.[90] G. Soldi, F. Bemporad, S. Torrassa, A. Relini, M. Ramazzotti, N. Taddei, F.Chiti. Amyloid formation of a protein in the absence of initial unfolding anddestabilization of the native state // Biophys. J., - 2005, - Vol. 89, - P. 4234–4244.105[91] B.R. Shah, A.
Maeno, H. Matsuo, H. Tachibana, K. Akasaka. PressureAccelerated Dissociation of Amyloid Fibrils in Wild-Type Hen Lysozyme //Biophys. J., - 2012, - Vol. 102, - P. 121–126.[92] T.J. Measey, F. Gai. Light-triggered disassembly of amyloid fibrils // LangmuirACS J. Surf. Colloids, - 2012, - Vol. 28, - P. 12588–12592.[93] U.K. Laemmli. Cleavage of Structural Proteins during the Assembly of the Headof Bacteriophage T4 // Nature, - 1970, - Vol.
227, - P. 680–685.[94] G.M.J.A. Klug, D. Losic, S.S. Subasinghe, M.-I. Aguilar, L.L. Martin, D.H.Small. Beta-amyloid protein oligomers induced by metal ions and acid pH aredistinct from those generated by slow spontaneous ageing at neutral pH // Eur. J.Biochem., - 2003, - Vol. 270, - P. 4282–4293.[95] S. Callaci, E. Heyduk, T. Heyduk. Core RNA Polymerase from E. coli Induces aMajor Change in the Domain Arrangement of the σ70 Subunit // Mol. Cell, - 1999, Vol.
3, - P. 229–238.[96] A.J. Dombroski, W.A. Walter, C.A. Gross. Amino-terminal amino acidsmodulate sigma-factor DNA-binding activity // Genes Dev., - 1993, - Vol. 7, - P.2446–2455.[97] A.J. Dombroski, W.A. Walter, M.T. Record, D.A. Siegele, C.A. Gross.Polypeptides containing highly conserved regions of transcription initiation factorsigma 70 exhibit specificity of binding to promoter DNA // Cell, - 1992, - Vol.
70, P. 501–512.[98] C. Wilson, A.J. Dombroski. Region 1 of sigma70 is required for efficientisomerization and initiation of transcription by Escherichia coli RNA polymerase //J. Mol. Biol., - 1997, - Vol. 267, - P. 60–74.[99] D.M. Hinton, S. Vuthoori, R. Mulamba. The bacteriophage T4 inhibitor andcoactivator AsiA inhibits Escherichia coli RNA Polymerase more rapidly in theabsence of sigma70 region 1.1: evidence that region 1.1 stabilizes the interactionbetween sigma70 and core // J. Bacteriol., - 2006, - Vol. 188, - P. 1279–1285.[100] S.
Vuthoori, C.W. Bowers, A. McCracken, A.J. Dombroski, D.M. Hinton.Domain 1.1 of the sigma(70) subunit of Escherichia coli RNA polymerase106modulates the formation of stable polymerase/promoter complexes // J. Mol. Biol., 2001, - Vol. 309, - P. 561–572.[101] V.N. Uversky, A.L. Fink. Conformational constraints for amyloid fibrillation: theimportance of being unfolded // Biochim. Biophys. Acta-Proteins Proteomics, 2004, - Vol. 1698, P. 131–153.[102] P.K.
Teng, N.J. Anderson, L. Goldschmidt, M.R. Sawaya, S. Sambashivan, D.Eisenberg. Ribonuclease A suggests how proteins self-chaperone against amyloidfiber formation // Protein Sci. Publ. Protein Soc., - 2012, - Vol. 21, - P. 26–37.[103] L.A. Munishkina, J. Henriques, V.N. Uversky, A.L. Fink. Role of protein-waterinteractions and electrostatics in alpha-synuclein fibril formation // Biochemistry(Mosc.), - 2004, - Vol. 43, - P.
3289–3300.[104] A.M. Shetty, G.M.H. Wilkins, J. Nanda, M.J. Solomon. Multiangle DepolarizedDynamic Light Scattering of Short Functionalized Single-Walled Carbon Nanotubes// J. Phys. Chem. C., - 2009, - Vol. 113, - P. 7129–7133.[105] D. Lehner, H. Lindner, O. Glatter. Determination of the Translational andRotational Diffusion Coefficients of Rodlike Particles Using Depolarized DynamicLight Scattering // Langmuir, - 2000, - Vol.
16, - P. 1689–1695.[106] S.W. Provencher. CONTIN: A general purpose constrained regularizationprogram for inverting noisy linear algebraic and integral equations // Comput. Phys.Commun., - 1982, - Vol. 27, - P. 229–242.[107] Hideki Matsuoka, Yoshito Ogura and Hitoshi Yamaoka. Effect of counterionspecies on the dynamics of polystyrenesulfonate in aqueous solution as studied bydynamic light scattering // J.
Chem. Phys., - 1998, - Vol. 109, - P. 6125–6132.[108] A. Relini, N. Marano, A. Gliozzi. Misfolding of Amyloidogenic Proteins andTheir Interactions with Membranes // Biomolecules, - 2013, - Vol. 4, - P. 20–55.[109] C. Rivetti, M. Guthold, C. Bustamante. Scanning force microscopy of DNAdeposited onto mica: Equilibration versus kinetic trapping studied by statisticalpolymer chain analysis // J. Mol. Biol.,- 1996, - Vol. 264, - P.
919–932.107[110] H. Chen, S.P. Meisburger, S.A. Pabit, J.L. Sutton, W.W. Webb, L. Pollack. Ionicstrength-dependent persistence lengths of single-stranded RNA and DNA // Proc.Natl. Acad. Sci., - 2012, - Vol. 109, - P. 799–804.[111] L. Masino, G. Nicastro, A. De Simone, L. Calder, J. Molloy, A. Pastore. TheJosephin domain determines the morphological and mechanical properties of ataxin3 fibrils // Biophys. J., - 2011, - Vol. 100, - P. 2033–2042.[112] T.P. Knowles, A.W. Fitzpatrick, S. Meehan, H.R. Mott, M.
Vendruscolo, C.M.Dobson, M.E. Welland. Role of intermolecular forces in defining material propertiesof protein nanofibrils // Science, - 2007, - Vol. 318, - P. 1900–1903.[113] C.C. vandenAkker, M.F.M. Engel, K.P. Velikov, M. Bonn, G.H. Koenderink.Morphology and persistence length of amyloid fibrils are correlated to peptidemolecular structure // J. Am. Chem. Soc., - 2011, - Vol.
133, - P. 18030–18033.[114] А.П.Толстова. Анализ данных атомно-силовой микроскопии с помощьюкомпьютерного моделирования: диссертация к.ф.-м.н., Москва, 2015.[115] William L. Jorgensen, Jayaraman Chandrasekhar and Jeffry D. Madura.Comparison of simple potential functions for simulating liquid water // J. Chem.Phys., - 1983, - Vol. 79, - P. 926–935.[116] B. Hess, H. Bekker, H.J.C.
Berendsen, J.G.E.M. Fraaije. LINCS: A linearconstraint solver for molecular simulations // J. Comput. Chem., - 1997, - Vol. 18, P. 1463–1472.[117] J.A. Camarero, A. Shekhtman, E.A. Campbell, M. Chlenov, T.M. Gruber, D.A.Bryant, S.A. Darst, D. Cowburn, T.W. Muir. Autoregulation of a bacterial sigmafactor explored by using segmental isotopic labeling and NMR // Proc. Natl. Acad.Sci. U. S.
A., - 2002, - Vol. 99, - P. 8536–8541.[118] J.W. Kelly. The alternative conformations of amyloidogenic proteins and theirmulti-step assembly pathways // Curr. Opin. Struct. Biol., - 1998, - Vol. 8, - P. 101–106.[119] M. Calamai, F. Chiti, C.M. Dobson. Amyloid fibril formation can proceed fromdifferent conformations of a partially unfolded protein // Biophys. J., - 2005, - Vol.89, - P.
4201–4210.108[120] G. Bhak, Y.-J. Choe, S.R. Paik. Mechanism of amyloidogenesis: nucleationdependent fibrillation versus double-concerted fibrillation // BMB Rep., - 2009, Vol. 42, - P. 541–551.[121] G. Merlini, V. Bellotti. Molecular mechanisms of amyloidosis // N. Engl.
J. Med.,- 2003, - Vol. 349, - P. 583–596.[122] V.N. Uversky. Mysterious oligomerization of the amyloidogenic proteins // FEBSJ., - 2010, - Vol. 277, - P. 2940–2953.[123] M. López de la Paz, L. Serrano. Sequence determinants of amyloid fibrilformation // Proc. Natl. Acad. Sci. U. S. A., - 2004, - Vol. 101, - P. 87–92.[124] N.S. de Groot, I.
Pallarés, F.X. Avilés, J. Vendrell, S. Ventura. Prediction of “hotspots” of aggregation in disease-linked polypeptides // BMC Struct. Biol., - 2005, Vol. 5, - P. 18.[125] M.T. Pastor, A. Esteras-Chopo, M. López de la Paz. Design of model systems foramyloid formation: lessons for prediction and inhibition // Curr. Opin. Struct. Biol., 2005, - Vol. 15, - P. 57–63.[126] F.
Rousseau, J.W.H. Schymkowitz, L.S. Itzhaki. The unfolding story of threedimensional domain swapping // Struct. Lond. Engl. 1993, - 2003, - Vol. 11, - P.243–251.[127] E. Žerovnik, V. Stoka, A. Mirtič, G. Gunčar, J. Grdadolnik, R.A. Staniforth, D.Turk, V. Turk. Mechanisms of amyloid fibril formation-focus on domain-swapping// FEBS J., - 2011, - Vol. 278, - P. 2263–2282.[128] C. Kim, J. Choi, S.J. Lee, W.J.















