Автореферат (1097857), страница 3
Текст из файла (страница 3)
!X!$ μ1 = −μ2 (k1 + k2) = 0 A ,7)!!" ( $/ '(0 )! /$= C θ = const )C θ = const- |p1,| = |p2,| = const ' /$ $!( 7)$!,( )' $!3 0! 7!* E ! !)0 ΔB!( !! .) ) bYf#! Δ < 5 $7C > )!( )!!( )0( ) )!!,* Uk[ ) s#$$ ." .) 8 >BNC)- !)$ !! 7!* 7)!!" ( E12 7!*" $ J12 ok !" !')3 X(/!!(" 5)/! !!!0 7* /3 ,!! !! 3 B$C ) ,$ (X " $( Tc ) J12 )0 !,)!! $!! JUP Y $/! 0 ! >BtC- !/ Tc 7$!! $ # ( .) !7)!!" ),! !"- $/ '(0 $! $$ !7)!!"12&(a)T=15 KT=0 K12JCP (10 arb. units)2(b)T=19 KT=15 KT=0 K1JPES (arb.
units)JUP (arb. units)010080T=19 KT=11 KT=11 K (exp)6040200-10 -8 -6 -4 -2 02Ε−ω (meV)0-10-8-6-4-202Ε−ω (meV)2446688 J K J12 L3 ,M $Δ = 2.6 1 Tc = 17 & /- 2E − ω = E12! 2 $N& $O& ' JCP $::& JUP $:(& # > $O& # ! ! 7P, 7$! Bk[qC k[q )0( ! >BtC )!()0 $)0 bYf / X! 7!*- ) ,!" 7$ 8 !! 7 )0 >BNC )- !/ " $( Uk[ ) !! !'!!0 B !!3 )$ k[qC= E12 = 0 $ * ! $!0X 7!*" E12 < 0- ) k[q g !! ,! ! $- !7)!!" 7$ *).! ! )!3 !!!" ( .$ !! $ !" 7$ ! )!3 !!( ( .$ !!8& 4,3 .! $ !) 7 ** ,$ ! 7$3 ! Y)!,! $ 7 ** $ BoUC ) !)0,! ! $/ !!$ J12- ( 3 )$ "R U 1 )+ 1 R V """ S! "i )" ) =J12() − J12(∗),J12() + J12(∗)B;:C* ! ! $0 7)!!* ), ! = x + iy B 7$ q · x ,y = 0C 5) ! 3." .) Δ = |Δ|eiχ- ) 7$ $$RCD =CPRCD= K(; P⊥, p) q · ∇p χp ,2Im{( · p)∗⊥ },K(; P⊥, p) =P⊥ |⊥ |2B;dC* !$ B⊥C '!!( )))0!( B!)!(C !, !( $!!(- P = p1 +p2 p = (p1 −p2)/2 e !!$$!(" !)0!(" $)0( 7)!!" ( 8$!)!( B;dC (γ, 2e) 7$! $/ '(0 .)! $,! )!!( *)( )!" 7)! !$) 7$ 8 B;dC )- 7 ** $ - ) ." .) ! !)0!* $)0 ( )- !- ) '(!( ! s#!$ !- !$- ) A5 !!" $/! ) $!$ ! !X!$ $!!" $,$- )!3 !!)" ." ( χ." !)0!* $)0 ( & 4,4 !)3 7( )* $*,!!* ) ! 7)!!(" .* $)$ .
)0 $*!!$ ) !($ ,! )$ A !* ! e b$= $*!! ) H = ∇ × A! !)3 ! )0 - ! 7$ 7 %"! ! ",! <) 7)!!* 7$ ) ) )3.(/!J12 = JUP + JCP,JUP ∝ dEN (E)N (E12 − E),JCP 2Δ∝ δ(E12),VB;&C* N (E) e )!0 !( !7)!!( !" )0 - V e$!(" 7)$! ! ) /! bYf)! .) Δ - ))0!- !!!0 $!!( JCP , $(- $*!!* %*!! ) !,> ." )0 - " 0 !)" ,* ! vd Y* " 0 * !! vd = vc- *vc = Δ/kF e 0 +!- $0 )0 $,/ !X0 )0 4)6 !- $ $ /$ $!! JCP '.
!)0- , 7)!!( E12 = 0)0( " *)( ')!( ' {d-i->-i|/%% " .! ! $ $!($ !",! 5 7$ ) 7)$*!!(" !) !!( - )/!- !"! ')3 !!)($ $*!!($ BL)7)$C $$!$P $! ) !"!,!( )!" $ $X!- ( $.03 !,!" $ ( 5! e % e *( e A(=|νl =3Uli∗ |νi ,B;iCi=1* Uli e 7)$!( $ ( $X!- )3. 0 $/ )",!($ Bl = e, μ, τ C $($ Bi = 1, 2, 3C !$ !"! & 5,1 '/3 ! ) )!$*!!( 7) $$! $!( !"! $!!(" !( 7$! 7 5$" , $*!!( $$! !"! .) 7$! !,7!*$ *$ !3 !(- )0!( )!,!( B!C!"! ! 7)! 7 7$! $ ,! )0! !!" 7!* T ! ** ! !"!! 7)! dσ/dT <) !* ) )0)* !",! ! ) '" !*!!3 $$ ) dσSM/dT - ("'))! )'($ $"$ $ A!!" $) Bq\C- !$!3.$ )0!0 !"!- ) dσ(μ)/dT - 3.* $,!!3 !"!!" )0! ! )/!3- (" '))!$*!!($ $$!$ !"! q\ ! ) )"!* !"!$ 2dσSMTTG2F meme=(gV + gA )2 + (gV − gA )2 1 −+ (gA2 − gV2 ) 2 ,dT2πEνEνB;>CW )( +.
% / % ,, , R " ! ST ! ;* Eν e !)0! 7!* !"!2 gA = 1/2- gV = (4 sin2 θW + 1)/2) νe gA = −1/2- gV = (4 sin2 θW − 1)/2 ) νμ ντ - * θW e *)"!'* ) !!"! ! )0 $! gA → −gA )0) $*!!" $!!( ! $ dσ(μ)= 4παμ2νldT11−TEνBC,* α e !! !" ( $) BC μν ) '"7!(" $*!!(" $$! ') ! !!" T ! B;>C ,!!($ $!! T - ! BC ' 1/T @)! ,! . !( 7$! * 3 0 !/! * )0! )! !!"7!* T )0 !!" 7!*" 7)! $ 57$) ! !!( 7 7$! !'$ " !,) ) $!( $- !- $ *$!- ! !"!!($" & 5,2 '." $)$ ! !"! ! '!(- ! !!( $ 7)! '.$ ) $,!" $X! ! )0!( ! dσSM/dT dσSM/dT T Eν !)$ ')/! ) 7)!!( !" $/! ,0 ldσSMG2F =1 + 4 sin2 θW + 8 sin4 θW I1(T ),dT4π*∞I1 (T ) =022 dqS(T, q ) 2 ,qdσ(μ)= 4π α μ2νl I2(T ),dTBC∞I2(T ) =S(T, q 2) dq 2.BC0! S(T, q2) 0 !$" !(" =2S(T, q ) =n2δ(T − En + E0) |n|ρ(q)|0| ,ρ(q) =Zexp(iq · ra ).B;Ca=190 9 e !!(" $)0- $$! $ $!($!$ |n BEn e 7!* 7 !"C #$ ra Z 7)! $; & 5,3 $ ! !"! ! !$ !,!$ 7)! !) )" ! ,'!* $ 5!( !) )!!( ( ) , ! '!* $- !.* 1s- 2s 2p !, $ ) ')/! $) !$(7)! ! ')/! ) ! )0!* !!" 7!* !5')$ ()! !*) BC $/ '(0 X! ),$ ')/! BusC- !'* !$$!03 7)!!* $)0 p *$)0!!$ $ $,!!( 7* '(!( ) 7$ ')/! !$," !(" )3.$ (/!$= q2q2mepqpq−θ T −,θ T−S(T, q ) =+−2p q2me me2me me2BC* θ e ! c" ()! !*) BC $.03 (/,! BC 7)$!! )0 !$- !*)( ),$ ')/! 3 ')/!$ '!( 7)! Br[C=1I2WKB = I2FE = 2me .I1WKB = I1FE = ,B:CTg '1! !($ ! ! )0 ,)!( )!!( =dσ/dT1 f (T ) ≡=ni θ(T − |Ei|),BdC(dσ/dT )ZFEi* $$! $ $!($ ')$ 7!*$ Ei )$ )!! ni $!(" f (T ) ! !)0!$) !( 7)! $ 7!* T - 7)!) ( ! X! !$ !! 7!*8& 5,4 .! !"!!" !" ! $!*7)!,!( $ ()!!( )!!( ( )'* $*!!* !,)0!( !" (ν, νe) ! $ *) )!()0( )!!( ) $!( =fSM =dσSM/dT,FE /dTdσSMfNMM =dσ(μ) /dT,FE /dTdσ(μ)B&CFEFE* dσSM/dT dσ(μ)/dT 3 )'$ $*!!$ )$ ,! )0! ! ! 7)!!( !!"! ! '!(7)!; Q R / $?C& /- ! -# - TI .;/ ()!!( )!!( ( ) (ν, νe) ! $ *,$! $) $ e $ 5! )! )0 7 !($ ')/!$ '/3 )!!( ), (- !!!( ! )$ ')/!c e & 5,5 ) )0 !# !",!!" !" ! $ ' )* ')/!()!!( )!!( ! ) )!! !* ')/! 7 !# <) ) $!*7)!!* $ $) $ e $ ) )3.
! ) ! !,!" !!( 7!*"- $ 7( *3 /!3 )0=T − TI 2Z 4/3Eh (me/Ma ),* Eh = α2me = 27.2 7 e 7!* c2 Ma e $ $2 TI e !,) ! <) *$! BZ = 32C 3 )$ T − TI 0.04 7<!! X) 7!*" !)0! ) . 7$! $*!!( $$! !( !!"!- ( *! *)0! *$!( )! T ! !- ),3.$ !)0 7 !! / !/ * ! K 7),! *$! TI ≈ 11 7- ( )3 !') )0! !!($ $)0 $ e $ .!! !/ ! !! !*$)0 p <) )!* $/! )00 $ )√p = 2me TI A3. X) 7!*" T − TI 0.3 7 ( ! ')0X- $ $) $ e $ / $- ! #/,!$ !)0! ) '/$( 7$!;;)0( " *)( ')!( ' {i-;:-;;;| &.
!( !!( )0(- )!!( , $)! *) ',!* ) )$!#X!*" $)( *" (e, 2e) ! $ # !( !7)!!( ! $) 4/)6 ) $))* $)- )!3.* )!, / .! !3 $) )0!* ))) (e, 2e) ! ! !!!* ) * :- )0 $ ) $!( !- ( !# ! )0!( ! bYf ;!( !! !*) !($ !$$ $ ! '!* $ !"!!($ $ RJmNvRS ]- kRERS J ]j QjTMKEhNG tMTDMMj IRIMjTJI PQHTRKTQRjNjP MhMOTKRjQO ORKKMhNTQRj Qj HGIIMTKQO (e, 3 − 1e) KMNOTQRjH LL kFGH s= ]T\Rh `ET kFGH e e Rh ;: e k z:;&z: RJmNvRS ]- sMKNvPNK ^FMRKG Rp MhMOTKRj#ENQK MIQHHQRj pKRI KNjPRINhhRGH LL kFGH nMS s e e Rh dd e k ;: B>C; RJmNvRS ]- sMKNvPNK [IQHHQRj Rp ORKKMhNTMP MhMOTKRjH pKRI KNjPRINhhRGH LL kFGH= oRjPMjH \NTTMK e ; e Rh : e k zz& sRhRxjMHQ k- QN o o- ]SNhPQ z- zNFINI#sMjjNjQ ]- RJmNvRS ]kRERS J URJthM QRjQmNTQRj Rp yM tG MhMOTKRj QIENOT NT hNKxM IRIMjTJITKNjHpMK LL kFGH nMS ] e ; e Rh d& e k ;& BC: RJmNvRS ]- sMKNvPNK lRj#QjPJOMP MhMOTKRj MIQHHQRj pKRI HJKpNOMH=UGjNIQONh HOKMMjQjx MMOTH LL kFGH nMS ] e ; e Rh di e k >BiCd RJmNvRS ]- sMKNvPNK kFRTRQjPJOMP MIQHHQRj Rp oRREMK ENQKH pKRIHJEMKORjPJOTRKH LL kFGH nMS zMTT e ; e Rh > e k :&& BC& sMKNvPNK - [KjHT ]- RJmNvRS ] qEQj#PMEMjPMjT ORKKMhNTMP MhMOTKRjMIQHHQRj pKRI RKPMKMP NjP PQHRKPMKMP INTMKQNhH LL aJOh ljHTKJI \MTFRPHkFGH nMH s e : e Rh ;; e k :;i RJmNvRS ]- sMKNvPNK qEMOTKRHOREG Rp MhMOTKRj ORKKMhNTQRjH QjHJEMKORjPJOTRKH LL kFQhRH \Nx e d e Rh id e k d;d;> RJmNvRS ]- sMKNvPNK \MOFNjQHIH Rp HJEMKORjPJOTQSQTG HTJPQMP tGTDR#ENKTQOhM MIQHHQRj LL [hMOTKRj qEMOTKRHO nMhNT kFMjRI e & e;Rh d e k RJmNvRS ]- QjQTHvG k q- kRERS J - UNh oNEEMhhR o [hMOTKRjQIENOT QRjQmNTQRj Rp NTRIH NT hNKxM IRIMjTJI TKNjHpMK= nMjRKINhQmMP EhNjMDNSM KHT#RKPMK IRPMhH LL [hMOTKRj qEMOTKRHO nMhNT kFMjRI e & eRh d e k ;:;& uNTNjNtM a- ^NvNFNHFQ \- wPNxNDN - RJmNvRS ]- kRERS J ^DR#HTME IMOFNjQHIH Qj QRjQmNTQRj#M OQTNTQRj Rp yM HTJPQMP tG tQjNKG (e, 2e)M EMKQIMjTH NjP HMORjP#sRKj#NEEKR QINTQRj ONhOJhNTQRjH LL kFGH nMS ] e& e Rh &: e k :& BiC ! " 5 A- Y Y - 5 - <)0 Y)) Y 8,)! ) 7 (X (e, 2e) ! $ LL ! %* ! A ; ,!$ e i e e A i;; uNTNjNtM a- RJmNvRS ]- kRERS J - ^NvNFNHFQ \ [hMOTKRj#QIENOTPRJthM QRjQmNTQRj Rp yM NT hNKxM IRIMjTJI TKNjHpMK HTJPQMP tG HMORjP#RKPMKsRKj#NEEKR QINTQRj ONhOJhNTQRjH LL kFGH nMS ] e i e Rh && ek ;&: B:C RJmNvRS ]- QjQTHvG k q- kRERS J yQxFMK#RKPMK NEEKR QINTQRjHTR MhMOTKRj#NTRI QRjQmNTQRj NT FQxF QIENOT MjMKxG NjP jMNK TFM sMTFM KQPxM LLrMD sRPG qGHT e i e Rh e k :&:>: RJmNvRS ]- kRERS J - qFNthRS z oRIIMjT Rj 4[ NOT TFKMM,PQIMjHQRjNh DNSM pJjOTQRj NjP TFM Rj#HFMhh t INTKQ pRK TFM HFNKEhG OJT#RoRJhRIt ERTMjTQNh= rNQhJKM Rp TFM HTNjPNKP KMjRKINhQmNTQRj pNOTRK6 LL kFGHnMS o e e Rh i e k >i BCd f') +- ! " 5 A- 5 - })!' - Y, Y b!" ! $ 7)!!($ ,$ LL g} e e e A d&d:& RJmNvRS ]- kRERS J - ^NvNFNHFQ \ zNHMK#NHHQHTMP MhMOTKRjIRIMjTJI HEMOTKRHOREG LL kFGH nMS ] e e Rh i e k ;BCi RJmNvRS ]- qTJPMjQvQj ] l \NxjMTQO jMJTKQjR HONTTMKQjx Rj NTRIQOMhMOTKRjH KMSQHQTMP LL kFGH zMTT s e e Rh d>d e k ::d> RJmNvRS ]- qTJPMjQvQj ] l- RhRHFQj \ s ^MHTQjx jMJTKQjR INxjMTQOIRIMjT Qj QRjQmNTQRj Rp NTRIH tG jMJTKQjR QIENOT LL 50$ g e e >; e k d>>&; RJmNvRS ]- qTJPMjQvQj ] l- RhRHFQj \ s aMJTKQjR#QIENOT QRjQmNTQRjRp NTRIH Qj HMNKOFMH pRK jMJTKQjR INxjMTQO IRIMjT LL kFGH nMS U e ;:e Rh i; e k ; BC sJhGOFMS ] ]- RJmNvRS ]- kRERS J ^FM KRhM Rp RhvRS DNSMH QjhNHMK#NHHQHTMP MhMOTKRj IRIMjTJI HEMOTKRHOREG LL kFGH zMTT ] e eRh ;&d e k ii& RJmNvRS ]- sMKNvPNK khNHIRj#NHHQHTMP MhMOTKRj#MhMOTKRj ORhhQHQRjH NTIMTNhhQO HJKpNOMH LL kFGH nMS ] e e Rh i: e k > BC; RJmNvRS ]- qTJPMjQvQj ] l `j HMjHQTQSQTG Rp jMJTKQjR#FMhQJI QRjQmQjxORhhQHQRjH TR jMJTKQjR INxjMTQO IRIMjTH LL 50$ g} e e e A &>&: RJmNvRS ]- qTJPMjQvQj ] l ^FMRKG Rp jMJTKQjR#NTRI ORhhQHQRjH= ^FMFQHTRKG- EKMHMjT HTNTJH- NjP sq\ EFGHQOH LL ]PS yQxF [jMKxG kFGH e e Rh e k :d>> BdC: ZQJjTQ o- RJmNvRS ]- zQ #r- zRvFRS ] - qTJPMjQvQj ] l- FRJ q[hMOTKRINxjMTQO jMJTKQjRH Qj hNtRKNTRKG M EMKQIMjTH NjP NHTKREFGHQOH LL ]jjkFGH BsMKhQjC e d e Rh :i e k >i:d 5 - Y Y - b)( - ! " A 8 ,* $!( " $!!$ 7)$ ) LL %e d e id e A ;& RJmNvRS ]- sMKNvPNK `j TFM MhMOTKRj#MhMOTKRj HONTTMKQjx NT HJKpNOMHRp KNjPRI tQjNKG NhhRGH LL l`k oRjp qMK e ; e Rh & e k d&&&i qOFJINjj r `- QKHOFjMK - RJmNvRS ]- sMKNvPNK oRKKMhNTQRjHEMOTKRHOREG Rp ORjPMjHMP INTTMK HGHTMIH LL ]lk oRjp kKRO e d eRh i e k >&> RJmNvRS ]- kRERS J - ^NvNFNHFQ \ ^FMRKG Rp hNHMK#NHHQHTMP MhMOTKRjIRIMjTJI HEMOTKRHOREG= sMGRjP TFM RhvRS DNSM sRKj NEEKR QINTQRj LL kFGH= oRjp qMK e e Rh ii e k > B:C; RJmNvRS ]- qTJPMjQvQj ] l [hMOTKRINxjMTQO jMJTKQjR#NTRI ORhhQHQRjH=TFM KRhM Rp MhMOTKRj tQjPQjx LL aJOh kFGH s BkKRO qJEEhC e e Rh& e k ;:;;:d; RJmNvRS ]- qTJPMjQvQj ] l- RhRHFQj \ s aMJTKQjR MhMOTKRINxjMTQOEKREMKTQMH NjP jMD tRJjPH Rj jMJTKQjR INxjMTQO IRIMjTH LL oRjp qMK e e Rh ;&: e k : BC; RJmNvRS ]- qTJPMjQvQj ] l aMJTKQjR#NTRI ORhhQHQRjH LL kFGH= oRjpqMK e d e Rh &i e k d; B:C;; RJmNvRS ]- qTJPMjQvQj ] l ^FMRKG Rp QRjQmQjx jMJTKQjR#NTRI ORhhQHQRjH=^FM KRhM Rp NTRIQO KMORQh LL aJOh kNKT kFGH kKRO e d e Rh &;&:e k d>d.