Гелль П.П., Иванов-Есипович Н.К. Конструирование и микроминиатюризация радиоэлектронной аппаратуры (1984) (1092053), страница 48
Текст из файла (страница 48)
Наибольшую функциональную сложность будут иметь конструкции, построенные на бескорпусных микросхемах. Обосновывая выбор конкретного типоразмера блока, конструктор должен руководствоваться системным подходом: учесть требования эксплуатации, объем предполагаемого выпуска, нормативные документы по рядам БНК для конкретной РЭА и выбрать типоразмер блока, ячейки, шкафа и т.
и. по максимальному заполнению объема элементами. Ряды БНК строятся часто таким образом, чтобы при переходе с одного типораамера блока на друтой получить постоянное приращение объема. Возможны и другие критерии, например постоянное приращение объема в долях объема предыдущего типоразмера блока.
В качестве примера рассмотрим блок реальной конструкции, предназначенный для установки на стеллажах самолета (рис. 5-4). В соответствии с ГОСТ 17045--71 «Корпуса блоков самолетной радиоэлектронной аппаратурь>з блоки могут быть малые (М), короткие (К), средние (С) и длинные (Д), малые низкие (МН) и короткие низкие (КН).
Ширина блока может дискретно меняться в пределах от 57 мм до 390 мм. Ширина блока (в миллиметрах) определяется зависимостью В, =.= Ва+ (и — 1)Л, "(; " где  — ширина исходного блока (57 мм); п — целое число в пределах от 1 до 6; Л вЂ” зазор мегкду блоками, Л-10 мм,. По высоте блоки делятся на низкие (Н) 88 мм и высо- ,,~;;;,.кие (В) 194 мм. Таким образом, блок, обозначенный 2 МН, .;::;:;:;::.: имеет ширину 124 мм, высоту 88 мм и длину 250 мм. «39 т» о Ог Рис. 6-2. Система несущих канструкний измерительных приборов 7 корпус «омалекюык иастольныл блаьеи; у — корпус мелагабаритнык блпкое общею иааначониа; а — корпуса Манов сюечною мсполненин; г настшпныа корпус с набором малогабаритных блокоа: 6- - устанонка комплектных блокоа «прибор иа прибор»; е— корпус малогабаритного осциллографического блока; 7 — настольныа шкаф с набором Мокни; д — перелиижноа шкаф с набором блакон РИС.
б-рбо СХЕМа ВХОднМОСти ЗЛЕМЕНтсн уинфнцнрОВаииОй СнетЕМЫ баЗО- вых нссущнх конструкций Бескорпусиаа микросхема — вм; у — микросхемы и микросборкп е «орпусех; у— ячейка; 8-блок; е — шкаФ и пульт; б — комплекс' шкафсш, тумб и пулшоа; б — ралистехиический ов;ек Ркс. 5-4. Блок разъемной копструкцпн самолетной аппаратуры 1 — передняя панель; 2 — утсльник; 3 — розетка ссединителя Рппм26; в — вбь. еднннтельввя печатная плеть; б — ивпрввлямптвя; б — звдняя пвнелы т — ячеакя с ссединнтелем РППМ26 Приступая к разработке аппаратуры, конструктор должен разделить принципиальную схему на логически законченные части по критерию функциональности с учетом максимального числа возможных соединений и унифицированного ряда типоразмеров блоков для данных условий ,-'' эксплуатации, выбрать типоразмер блока для каждой полученной части схемы.
При этом может оказаться, что вы:,.-::;::: бранный типоразмер блока не обеспечивает достаточно вы,'.;-:::: сокого коэффициента заполнения, а в предшествующих ти.;:; поразмерах схема не помещается. Это является следствием ';;". того, что данный ряд типоразмеров блоков не оптимален для конкретной конструкции РЭА. В этом случае получается экономический проигрыш, который всегда будет наблюдаться, если унифицированный ряд типоразмеров блоков построен не для конкретной аппаратуры. Конструктору приходится решать сложную задачу. Нарушать функционально-узловой принцип разработки блоков нецелесооб.,:- разно по условиям производства и эксплуатации, а кроме .,Ф; того, прн отступлении от этого принципа увеличивается ~:;:,:~число коммутационных связей, что также невыгодно.
По,.'.::этому большинство блоков в современной аппаратуре нме";: ет разные коэффициенты заполнения объема и с этим недо- 16-690 24$ статком приходится мириться. Выход из этого положения мохгет быть только один: создание ряда базовых конструкций применительно только к данной РЭА; но это означало бы отход от принципа стандартизации, что также невыгодно. Т-2. ВЫВОР КОРПРСЛ ЕПОКЛ С УЧЕТОМ ТРГЕОВАНИЙ РЕМОНТОПРИГОДНОСТИ Общие с, ображення. Подавляющее большинство радиоаппаратуры предназначено для длительной эксплуатации и поэтому в течение всего срока службы может неоднократно подвергаться ремонту. Аппаратура разового использования рассчитана на длительное хранение в складских условиях н и .риодически подвергается профилактическому осмотру и проверке.
При обнаружении неисправности такая аппаратура также подвергается ремонту путем замены отказавших элементов и устройств. После ремонта часть элементов будет заменена новыми, поэтому такая характеристика надежности, как вероятность безотказной работы, в этих условиях не может служить оценкой надежности аппаратуры в любой момент времени. Вероятность исправного состояния аппаратуры. Для аппаратуры длительного использования вводится понятие вероятности исправного состояния системы в любой момент времени. Аналитическое выражение вероятности исправного состояния системы может быть получено как решение системы дифференциальных уравнений, составленных на основе применения к поставленной задаче методов теории массового обслуживания: — — — — Р,(!)+ — Р,(() дРв (!) ! ! О в в'Р, (!) ! ! — Р„(! ) — — Р, (1), ~и т, " т, где 1)Т,— интенсивность отказов аппаратуры, 1/ч; 1/Т,— интенсивность восстановления аппаратуры, 1/ч; РвЯ— вероятность исправного состояния аппаратуры; Р,(!)— вероятность неисправного состояния аппаратуры.
В качестве начальных условий примем, что вероятность исправного состояния аппаратуры в начальный момент вре. мени (1=0) отличается от единицы, 0<Ко<1, т. е. Рв(0) = =Кв. Это означает, что к началу использования аппаратура может находиться в исправном или неисправном состоянии, 24? с вероятностью исправного состояния К,, Решение этой системы с учетом начальных условий будет т.
( т К)ехр~ (' + ')1~ .(~;.:., Это выражение справедливо при Кя в пределах от 0 до 1 и при 1 в пределах от О до со. При 1- оо т. а+ в Это значит, что надежность системы длительного использования с восстановлением после возникновения неисправности численно равна коэффициенту готовности. Отсюда видно, что повышение надежности таких систем возможно за счет сокращения времени вынужденного простоя.
Теоретически можно получить систему с вероятностью ис- 3' правного состояния Р,Я =1, при этом Т,-О, что отвечает 100%-ному поэлементному резервированию, однако реализовать это условие на практике не представляется возможным. Для ряда систем опасен не сам факт отказа, а длительность прекращения работы системы. Для систем, работающих с прерыванием, восстановление аппаратуры после возникновения отказа проводят в период, когда аппаратура не работает, Если созданы условия, при которых время вынужденного простоя аппаратуры будет меньше .:::,', времени, в течение которого аппаратура не используется, то такой отказ не приведет к срыву выполнения задания. Рассматривая работу аппаратуры, можно предположить несколько возможных ситуаций: 1.
Система исправна в момент включения и не откажет за время оперативной работы. Очевидно, что при этих условиях задача, стоящая перед аппаратурой, будет выполнена. 2. Система исправна в момент включения, но во время оперативного использования происходит отказ.
При такой ситуации поставленная задача не будет выполнена, 3. Система неисправна в момент включения, но восста- новлена за время т, и не откажет за оставшееся время ::~~1':",-''' 1 — т,. При этом время восстановления т, меньше времени подготовки системы к работе. Если обозначить время под:::„'<", готовки системы к работе т (допустимое время), то необ- '~:,!::, ходимо реализовать условие т~(тх. В этом случае поставф"!:".;,. ленная задача будет выполнена. ф~!,":: 4. Система неисправна в момент включения и не восста'"'-'-новлена за допустимое время простоя, т.
е. ть)тл. задача ие выполнена. 16~ З4З Вероятность появления второй ситуации относительно мала, так как интенсивность отказов современных элементов, особенно микросхем н микросборок, не превышает 1О ' †!О-' 1/ч. С точки зрения конструктора интерес представляет третья ситуация, Задача формулируется так: какой выигрыш по надежности можно получить, если удается восстановить аппаратуру с вероятностью восстановления 1'(тх) г' Вероятность нормального функционирования. Вероятность того, что задача не будет сорвана вследствие неисправности системы (Р, в), называют вероятностью нормального функционирования в предположении простейших потоков отказов и восстановлений.
Пренебрегая членами высших порядков малости н используя формулу полной вероятности сложного события, получим Р».ф (1 1 ) РоР (!) + (1 Р») ~ (тх) Р (( тв) где Р, — стационарная вероятность исправного состояния аппаратуры; РЯ вЂ” вероятность безотказной работы; 1 — Р„ — стационарная вероятность неисправного состояния аппаратуры; г'(т„) — вероятность восстановления аппаратуры за допустимое время т; Р(( — т») — вероятность безотказной работы аппаратуры за оставшееся время ( — т,; В большинстве случаев при наработке на отказ Т выполняется условие ГЪ Т,, где Т, — математическое ожидрние случайной величины т .