Лекции по свариваемости металлов (1088762), страница 5
Текст из файла (страница 5)
5.2 Формирование соединений при точечной и шовной сварке.
Необходимое и достаточное условие образования соединения – образование общей зоны расплавленного металла или ядра заданных размеров. Формирование соединений происходит в три этапа.
-
Первый этап начинается с момента включения тока и характеризуется образованием электрического контакта, нагревом и расширением твердого металла, приводящим к увеличению зазоров и вытеснению под действием сварочного усилия металла в зазор и образованию усложняющего ядра пояска.
-
Второй этап отличается дальнейшим увеличением площади контактов, возникновением и ростом расплавленного ядра. На этом этапе происходит дробление и перераспределение поверхностных пленок в жидком металле и продолжаются процессы пластической деформации и расширения металла.
-
Третий этап начинается с момента выключения тока и характерен охлаждением и кристаллизацией металла.
5.3 Влияние параметров сварки на образование и устранение дефектов.
Степень пластической деформации (F) обеспечивает получение необходимой площади электрического контакта, образование вокруг ядра уплотняющего пояска из твердого металла, который препятствует выдавливанию (выплеску) жидкого металла из ядра и защищает его от взаимодействия с окружающей атмосферой.
Изменение усилия (F) дает возможность управлять процессами кристаллизации и влиять на величину остаточных напряжений.
Поверхностные пленки (окислы, слои плакировки) более тугоплавкие чем основной металл. Они полностью разрушаются и перераспределяются лишь в жидком металле. Этот процесс – один из основных, т.к. он способствует удалению поверхностных пленок, мешающих взаимодействию в жидкой фазе (образование общей сварочной ванны). Разрушение и удаление указанных пленок в жидком металле происходит под действием электродинамических сил. Действие этих сил приводит к интенсивному перемешиванию жидкого металла и выравниванию состава ядра при сварке разнородных металлов. Электродинамические силы – объемные силы – максимальные на периферии и снижающие до нуля в центре ядра. В результате этих сил в расплаве происходит распределение давления. Литое ядро имеет форму эллипсоида. Давление в центре максимально, а на границе снижается до нуля. Такое распределение давления ведет к циркуляции жидкости от центра к периферии. Частицы пленки перемещаются к периферии. Под действием электродинамических сил расплавленный металл и находящиеся в нем частицы (пленки) испытывают движения в различных направлениях и с различной скоростью. Такое перемещение вызывает перемешивание металла, разрушение пленок и концентрацию разрушенных нерастворимых частиц пленки на периферии расплава. Происходит термомеханическое воздействие на металл, оказывающее влияние на свойство металла ядра и расположенного вокруг него металла околошовной зоны.
Кристаллическая структура ядра представляется в виде дендритов, растущих на базе полурасплавленных зерен. Оси этих дендритов в центральной зоне ядра совпадают с осью электродов, т.е. с направлением максимального градиента температур и наибольшего отвода теплоты. Между отдельными кристаллами может иметь место междендритная ликвация, а также может проявляться и зональная ликвация. При наличии растягивающих напряжений в этих зонах образуются горячие трещины.
В центре ядра наблюдается также различные рыхлоты усадочного происхождения, связанные нехваткой металла при кристаллизации. Наличие больших запасов влаги на поверхности пленки, служащей источником водорода, приводит иногда при сварке с малыми усилиями к появлению рассеянной пористости в ядре. При повторном нагреве точки шва в результате диффузии газов из твердого металла в несплошности может происходить развитие пористости. Борьба с порами – очистка поверхностей.
Избежать образования трещин и рыхлоты удается путем уменьшения скорости охлаждения (подогрев металла дополнительным импульсом тока), повышением усилия на электродах (в 2-3 раза) после выключения тока, когда металл находится в твердом состоянии.
Помимо дефектов, возникающих при кристаллизации: 1) нарушающих склонность металла ядра и околошовной зоны можно разделить на несколько групп:
-
изменение заданных размеров ядра или полное отсутствие ядра, общего для соединяемых деталей (дефекты типа непровара);
-
выброс – выплеск расплавленного металла из зоны контакта деталей и деталей с электродом;
-
интенсивный переход электродного металла на поверхность соединений;
-
существенное изменение структуры и свойств металла ядра и околошовной зоны.
Непровары. Общий причиной можно считать различные нарушения характера температурного поля вследствие, например, отключения энергетических параметров от заданных значений и т.д.
Наиболее опасен непровар в виде «склейки» - отсутствие ядра и соединение деталей происходит в твердой фазе по ограниченной площади (микровыступы и неровности). Соединения с таким непроваром быстро разрушается при действии отрывающих, знакопеременных нагрузках и температур.
Другой вид непровара – снижение размеров ядра ниже установленных (номинальных) значений. Дефект наблюдается при наличии на поверхности деталей относительно тугоплавких слоев (оксидная пленка, толстый слой плакировки и т.д.). Ограниченная зона взаимного расплавления уменьшает рабочее сечение точки и ее прочность.
Устранение непроваров: корректировка параметров режима (величины тока, сварного усилия) и проверка соответствия заданным таких параметров процесса, как состояние поверхности электрода и деталей, качество сборки и т.д.
Выплески. Частицы металла, выброшенные из ядра, могут отрываться от него и, попадая в полость изделия, приводить к выводу из строя различных агрегатов. Выплески снижают стойкость электродов.
Наружные выплески возникают при малых сварочных усилиях, большой пластичности тока, перекосе деталей, неудовлетворительное состояние деталей или электродов и т.д.
Внутренний выплеск связан обычно с перегревом металла в контакте деталь-деталь, с локальным образованием зазора в уплотняющем пояске за счет сил, возникающих при расплавлении металла. Вероятность выплеска увеличивается с ростом диаметра ядра и проплавления, а также размеров контактов, в связи с возрастанием раскрывающих усилий и уменьшением значения действующих в зоне деформирования напряжений.
Устранение выплесков аналогично устранению перегревов.
Взаимодействие разнородных контактов металлов в контакте электрод-деталь приводит к загрязнению рабочей поверхности электрода продуктами взаимодействия с другой стороны – к переносу электродного металла на поверхность детали. Загрязнение поверхности электрода и деталей приводит к существенным изменениям их физико-химическим свойств (снижение тепло- электропроводности), что приводит к уменьшению теплоотвода в электроды и резкому увеличению температуры контакта. Следствием этих процессов является выплеск металла.
Включения металла электродов на поверхность деталей значительно снижает коррозионную стойкость соединений (особенно алюминиевых и магниевых сплавов).
Снижение интенсивности взаимодействия целесообразно уменьшить температуру поверхности контактирования путем, например, применения жестких режимов сварки, контроля за состоянием поверхности деталей и хорошего охлаждения электродов.
Изменение структуры и свойств металла ядра и оклошовной зоны вызывается термомеханическим воздействием на металл соединений.
Изменение структуры металла ядра при дендритной кристаллизации вызывают ликвации (легкоплавкие сплавы), отличающиеся повышенной хрупкостью. В околошовной зоне могут наблюдаться изменения исходной структуры и свойств сплава в результате развития ряда процессов, связанных с термическим циклом сварки: закалки, оплавления легкоплавких составляющих по границам зерен (эвтектики), отпуск, рекристаллизация и т.д.
Закалка. При сварке закаливающихся сталей происходят существенные изменения свойств металла особенно его пластичности. Это связано с появлением структуры мартенсита, отличающегося малой пластичностью и небольшим сопротивлением к образованию трещин.
Оплавление легкоплавких составляющих вызывает снижение пластичности сварных соединений из высоколегированных, термически упрочняемых алюминиевых и магниевых сплавов.
При соединении низкоуглеродистой стали наблюдается оплавление границ зерен (пережог). Сплавы, не упрочняемые термической обработкой, например АМг-6 и АМг-2 склонны к рекристаллизации и укрупнению зерна, что снижает прочность и пластичность соединений. Также при сварке аустенитных сталей могут привести к межкристаллитной коррозии (объединение границ зерен хромом).
Степень развития указанных выше процессов можно регулировать за счет режимов сварки. В частности, процессы рекристаллизации, выпадения (растворения) составляющих сплава и т.д. легко подавляются при, применении жестких режимов сварки. Склонность в закалке может быть снижена при использовании многоимпульсных режимов (подогревы), замедляющих скорость охлаждения.
Благоприятное влияние на свойства металла околошовной зоны оказывает усилие сжатия и пластическая деформация, которая приводит к измельчению хрупких прослоек по границам зерен и снижению уровня растягивающих напряжений. Поэтому сварные узлы не нуждаются в последующей термообработке (по сравнению с дуговой сваркой). Ширина зоны при точечной и шовной сварке весьма ограничена (иногда менее 1мм.), но сравнение с шириной этой зоны при других методах сварки в жидкой фазе (например, при дуговой), вследствие относительно малой длительности нагрева.
6 Образование качественного соединения при пайке.
6.1 Факторы, влияющие на образование соединения.
Смачивание и растекание припоя, взаимодействие припоя с основным металлом и окружающей средой (газами), кристаллизация припоя и т.д.
Пайкой называется процесс соединения металла в твердом состоянии путем введения в зазор припоя, взаимодействующего с основным металлом и образующего жидкую металлическую прослойку кристаллизация которой приводит к образованию паяного шва.
Классификацию способов пайки осуществляют по физико-химическим признакам и средствам нагрева.
Капиллярной называют пайку, при которой припой заполняет зазор между соединяемыми поверхностями деталей и удерживается в нем за счет капиллярных сил.
Диффузионной называют пайку, отличающуюся длительной выдержкой с целью упрочнения соединения за счет диффузии компонентов припоя и паяемых металлов.
Контактно-реакционной называется пайка, при которой между соединяемыми металлами или между соединяемыми металлами и прослойкой другого металла в результате контактного плавления образуется сплав, который заполняет зазор и при кристаллизации образует паяное соединение. Пайка осуществляется без припоя.
6.2 Особенности кристаллизации при пайке.
-
Неравномерность процесса.
-
Активное взаимодействие между расплавленным припоем и основным металлом в зоне слоя.
-
Влияние на процесс кристаллизации основного металла.
-
Ярко выраженная ликвация в шве.
-
Зависимость характера кристаллизации от качества припоя в соединительном зазоре.
-
Неравномерность процесса. В условиях кристаллизации в паяных швах одновременно идут ограниченные по времени и сложные процессы взаимодействия в системах: 1) основной металл – флюс – припой – атмосфера воздуха или 2) основной металл – контролируемая газовая среда – припой, состояние равновесия в которых не достигается. При неравновесной кристаллизации частично подавляется выравнивание состава, как твердой так и жидкой фазе, что приводит к дендритной ликвации, вызывает выделение в шве, наряду с тугоплавкой, более легкоплавкой составляющей, обладающей повышенной хрупкостью.
-
При пайке получают большое развитие процессы взаимодействия основного металла и расплавленного припоя в результате чего последний интенсивно легируется компонентами основного металла. Состав припоя в процессе пайки может меняться в результате растворения в нем основного металла, а также в результате избирательной диффузии компонентов припоя в основной металл, испарения наиболее летучих компоненты припоя, окисления и удаления в шлак за счет газовой фазы или окислов основного металла. В результате
В результате процессов, протекающих на границе, основной металл – расплав припоя, может образоваться один или несколько слоев интерметаллических соединений. Они обладают высокой хрупкостью, поэтому наличие их в закристаллизовавшемся паяном шве ведет к снижению прочности паяных изделий. Для предупреждения из появления, на основной металл наносят барьерные покрытия, выбирают соответствующий режим пайки, изменяют скорость нагрева перед пайкой и охлаждения после пайки.
-
Влияние твердой поверхности основного металла приводит к ориентированной кристаллизации металла шва. В отдельных случаях наблюдается непрерывная структурная связь между основным металлом и зоной сплавления.
Основные зоны паяного шва
Рассмотрим основные зоны, которые принято различать в паяных швах.