LectOS1po12 (1085769), страница 4

Файл №1085769 LectOS1po12 (Лекции по операционным системам) 4 страницаLectOS1po12 (1085769) страница 42018-01-12СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

Чтобы обратиться к конкретному элементу данных, программа указывает блок, в котором этот элемент располагается, и смещение этого элемента относительно начала блока, т.е. в упорядоченной паре (b, d) b является номером блока, в котором размещается соответствующий элемент, а d - смещением относительно начального адреса этого блока. Подобная организация внутренней памяти используется, например, в так называемом реальном режиме функционирования ЭВМ типа IBM PC с микропроцессором 80х86, при этом обе величины - b и d - содержат по 4 шестнадцатеричных цифры; для получения физического адреса, соответствующего паре (b, d), величина b сдвигается в сторону старших разрядов на четыре двоичных разряда, а затем к младшим шестнадцати двоичным разрядам b добавляется d и в результате сложения получается физический адрес элемента.

Виртуальная память

В настоящее время именно концепция виртуальной памяти получила наибольшее распространение при организации внутренней памяти современных ЭВМ. Суть концепции виртуальной памяти заключается в том, что адреса, к которым обращается выполняющийся процесс, отделяются от адресов, реально существующих в первичной памяти. Те адреса, на которые делает ссылки выполняющийся процесс, называются виртуальными адресами, а те адреса, которые существуют в первичной памяти, называются реальными (или физическими) адресами. Диапазон виртуальных адресов, к которым может обращаться выполняющийся процесс, называется пространством V виртуальных адресов этого процесса. Диапазон реальных адресов, существующих в конкретной ЭВМ, называется пространством R реальных адресов этой ЭВМ.

Несмотря на то, что процессы обращаются только к виртуальным адресам, в действительности они должны работать с реальной физической памятью. Для этого во время выполнения процесса виртуальные адреса необходимо с помощью соответствующих аппаратных средств преобразовывать в реальные, причем это преобразование должно быть достаточно быстрым, так как в противном случае производительность ЭВМ будет существенно снижаться и тем самым сведутся на нет те преимущества, которые призвана обеспечить прежде всего концепция виртуальной памяти.

В процессе написания программы пользователь освобождается от необходимости учитывать размещение частей своей программы и данных для нее в реальной памяти. Решение этих вопросов берут на себя соответствующие программы, относящиеся к общему программному обеспечению: трасляторы, компоновщики, загрузчики, операционные системы. Для реализации указанного размещения и быстрого преобразования адресов в совре менных ЭВМ используются соответствующие аппаратурные средства, загрузка данных в которые производится ОС при подготовке процесса к выполнению.

В случае, когда используется только сегментная или только страничная адресация, виртуальный адрес, как уже указывалось, состоит из двух компонент: номера блока и смещения в рамках этого блока. Если же используется комбинированная сегментно-страничная организация, то применяется трехкомпонентная (трехмерная) организация, т.е. для элемента виртуальной памяти адрес определяется как упорядоченная трой ка v = (s, p, d), где s - номер сегмента, p - номер страницы, а d - смещение в рамках страницы; по этой тройке находится нужный физический элемент.

В блочных системах могут быть использованы различные способы преобразования виртуального адреса в реальный физический: прямого, ассоциативного или комбинированного (ассоциативно-прямого) преобразования. В качестве примера рассмотрим общий вид схемы прямого преобразования виртуального адреса (b,d) в реальный (b'+ d), представленной на рис.1.

Рис.1. Схема прямого преобразования виртуального адреса в реальный

Программно-аппаратные средства защиты виртуальной памяти

Для иллюстрации возможности этих средств рассмотрим вид типичной строки таблицы блоков (сегментов или страниц), хотя в различных ЭВМ вид этих строк может различаться; для одной и той же ЭВМ вид строки таблицы сегментов также может отличаться от вида строки таблицы строк.

p

a

L

R

W

E

A

b'

Рис.2. Строка таблицы блоков

На этом рисунке использованы следующие обозначения:

р - бит присутствия;

а - адрес внешней памяти для случая, когда р=0, т.е. блока нет в физической внутренней памяти;

L - длина блока;

R - бит разрешения только чтения данных;

W - бит разрешения записи и чтения данных;

Е - бит разрешения выполнения команд, содержащихся в этом блоке;

А - бит разрешения дополнения данного блока данных новыми данными, записываемыми в конец этого блока;

b' - базовый адрес блока, если он уже находится в реальной ОП.

Работа программных средств по считыванию блока из внешней памяти в случае, если бит р=0, инициируется с помощью прерывания, программа обработки которого относится к программным средствам поддержки реализации виртуальной памяти, а сами эти средства принадлежат ОС.

После загрузки блока продолжается обработка виртуального адреса, при этом в первую очередь смещение d сравнивается с длиной блока L.

При d > L вырабатывается прерывание по выходу за пределы блока и затем ОС прекращает выполнение данного процесса. Если d < L или d=L, то происходит контроль по битам защиты R, W, Е и А, чтобы удостовериться, что соответствующая операция доступа разрешена. Если такое разрешение имеется, то с помощью аппаратных средств вычисляется физический адрес, соответствующий поступившему виртуальному адресу. Если же соответствующий вид доступа запрещен, то происходит прерывание по защите блока и затем ОС прекращает выполнение текущего процесса.

Управление виртуальной памятью

1. Стратегии выталкивания страниц

В вычислительных системах со страничной организацией ОП при работе в мультипрограммном режиме работы с высокой вероятностью может возникнуть ситуация, при которой все страницы ОП оказываются занятыми. В этом случае программы управления памятью, входящие в ОС, должны решать, какую страницу следует удалить из первичной памяти, чтобы освободить место для поступающей страницы. Наиболее известными являются следующие стратегии выталкивания страниц:

  • использование принципа оптимальности;

  • выталкивание случайной страницы;

  • выталкивание первой по времени пришедшей страницы(принцип FIFO);

  • выталкивание дольше всего не использовавшейся страницы;

  • выталкивание наименее часто использовавшейся страницы;

  • выталкивание не использовавшейся в последнее время страницы;

  • использование рабочего множества.

Принцип оптимальности говорит о том, что для достижения оптимальных скоростных характеристик и эффективного использования ресурсов следует заменять ту страницу, к которой в дальнейшем не будет новых обращений в течение наиболее длительного времени. Очевидно, что реализация такой стратегии возможна только в том случае, когда повторяется выполнение ранее решавшейся задачи с той же последовательностью выполняемых команд; однако подобная ситуация на практике может иметь место в относительно редком числе случаев, например, в некоторых системах реального времени. Поэтому из остальных стратегий выталкивания страниц следует выбрать такие стратегии, которые по даваемым ими результатам наиболее близко приближаются к принципу оптимальности. Эта задача не имеет решения в общем случае, так как условия функционирования различных задач и даже одной задачи на различных участках ее выполнения могут существенно отличаться друг от друга. Одной из наиболее эффективных стратегий выталкивания страниц может в ряде случаев, в частности, в системах реального времени, оказаться стратегия, основанная на использовании рабочих множеств. Под рабочим множеством в этом случае понимают подмножество страниц, к которым процесс наиболее часто обращается. Исследования различных авторов показали, что в большинстве случаев объем рабочего множества не превосходит 10% от объема всей памяти, использовавшейся для процесса; поэтому в ОП в первую очередь должно содержаться рабочее множество процесса, а остальные блоки затребованной памяти должны загружаться в ОП при возникновении соответствующего запроса со стороны выполняемого процесса.

2. Стратегии подкачки страниц

В настоящее время все более относительно дорогим становится относительная стоимость времени, затрачиваемого программистом или вообще пользователем, по сравнению со стоимостью аппаратуры. Поэтому достаточно часто идут на увеличение объема ОП и применяют стратегию упреждающей подкачки, отказываясь от стратегии подкачки по запросу.

3. Стратегии размещения

Их цель состоит в определении того места ОП, в которое следует поместить поступающую страницу или сегмент. В системах со страничной организацией ОП эта проблема тривиальна, так как берется любая свободная страница.

Системы с сегментной организацией ОП требуют более сложных стратегий размещения, так как существует возможность выбора по объему участков свободной памяти и могут быть трудности типа так называемой фрагментации памяти. Суть ее состоит в том, что в ОП накапливается значительное число свободных, небольших по объему, участков, которые невозможно использовать для размещения вновь запрошенных сегментов, так как все эти сегменты больше по своему объему указанных свободных участков памяти. В итоге может оказаться, что существенная часть ОП окажется непригодной для использования без принятия специальных мер со стороны ОС по проведению дефрагментации ОП, однако процедура дефрагментации требует приостановки процесса обслуживания пользователей на некоторое время. Возможно, что именно по этой причине некоторые ОС не используют сегментную организацию памяти.

Большинство имеющихся в литературе данных, как теоретических, так и эмпирических, свидетельствуют о том, что в ЭВМ целесообразно выбирать страницы относительно небольшого размера. Например, в защищенном режиме работы ЭВМ с микропроцессором 80х86 при х > 2 используется размер страницы, равный 4 Кб.

Лекция N 5

Управление вводом-выводом данных в ЭВМ

Одной из систем, имеющихся в любой ЭВМ общего назначения, является аппаратура ввода-вывода данных, состоящая из каналов (процессоров обмена), устройств управления периферийными устройствами (ПУ) и самих ПУ. ПУ разделяют на 2 основных группы: устройства ввода-вывода и запоминающие устройства (ЗУ).

В составе любой ОС существует специальная подсистема, управляющая аппаратурой ввода-вывода. Основные задачи, решаемые с помощью этой подсистемы, состоят в следующем: подсистема должна обеспечить пользователей удобным и понятным интерфейсом для обращения к ПУ как в однопользовательском, так и в многопользовательском режимах работы ЭВМ; при этом часто выдвигается требование на достижение унифицированного интерфейса для доступа к различным по своим физическим характеристикам ПУ, для чего реализуется принцип независимости от устройств; в мультипрограммном режиме работы систем разделения времени подсистема должна обеспечить такое планирование процесса ввода-вывода данных, чтобы достичь максимального перекрытия во времени работы центрального процессора (ЦП) и аппаратуры ввода-вывода.

Состав подсистемы ОС для устройств ввода-вывода и аппаратура ввода-вывода существенно отличаются для различных ЭВМ, но можно выделить и единое концептуальное начало, свойственное всем подсистемам. Аппаратуру ввода-вывода можно рассматривать как совокупность аппаратурных процессоров, которые способны работать параллельно друг относительно друга, а также относительно ЦП. На таких процессорах выполняются так называемые внешние процессы. Например, для печатающего устройства процесс может состоять из совокупности действий, обеспечивающих перевод каретки, продвижение бумаги на одну строку, печать любого заданного числа символов на строке.

Внешние процессы взаимодействуют с программными процессами, выполняемыми ЦП и оперативной памятью (ОП). Существенно, что скорость выполнения программного процесса может на несколько порядков превосходить скорость внешнего процесса.

Подсистема ОС для управления вводом-выводом с точки зрения программных процессов является интерфейсом с ПУ. Различают три типа действий с ПУ:

1. операции чтения-записи данных;

2. операции управления ПУ;

Характеристики

Тип файла
Документ
Размер
1,18 Mb
Тип материала
Высшее учебное заведение

Список файлов лекций

Лекции по операционным системам
Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6451
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее