Учебное пособие по ИНиТ 2-е изд (1084708), страница 4
Текст из файла (страница 4)
Наряду с использованием в военном деле метательных, стенобитных машин и осадных башен в Европе в XIV в. появилось огнестрельное оружие. Это были толстые, гладкие внутри железные трубы, закреплённые на деревянных станках и стрелявшие ядрами.
С появлением огнестрельного оружия изменились способы ведения войны. Повлияло это и на фортификацию — строительство крепостей и других оборонительных инженерных сооружений.
Эволюция военной техники, несомненно, повлекла за собой развитие горного дела, производства чугуна, совершенствования литейного производства и металлообработки (литье стволов пушек, уменьшение диаметра канала ствола стрелкового оружия, появление пружинного курка и т.п.).
Среди других изобретений рассматриваемого периода следует выделить механические часы. Первые механические часы с приводом от груза появились в Европе в Х в., а в виде башенных они распространились в Европе в XIII-XIV вв.
Осуществление великих географических открытий не было бы возможным без такого полезного изобретения как компас. Начало его применения европейцами в мореплавании относится к XII в. Но впервые обстоятельно описал свойства компаса французский ученый Пьер да Марикур (Петр Перегрин). Он описал в связи с этим и свойства магнитов, и явление магнитной индукции.
Существует также мнение, что успехи просвещения в эпоху Возрождения были достигнуты во многом благодаря изобретению очков в Италии, которое относится к XIV в. Очковые линзы стали основой при создании таких оптических инструментов, как микроскоп и телескоп.
Трудно переоценить последствие возникновения в Европе бумажного производства. Бумага попала в Европу через арабов в XII в. И уже в начале XII в. (в Испании) было организовано производство бумаги из хлопка. Затем бумагу стали производить из более дешевого сырья — из тряпья и отходов текстильного производства. Совершенствование и развертывание производства бумаги способствовало появлению книгопечатания, роль которого в научном прогрессе и распространении знаний весьма велика. В Европе немецкий мастер Иоганн Гуттенберг (1400-1468) начал печатать книги (первой была Библия ─ 1450) на созданном им станке с подвижных наборных литер, которые позволяли набирать текст крупными фрагментами.
Ремесленный период развития техники в Европе отмечен также развитием строительной техники и расширением производства строительных материалов; появлением в текстильном производстве механических прядильных и усовершенствованных ткацких станков горизонтального типа; эволюцией сухопутного и водного транспорта (переход от гребного флота к парусному, начало строительства военных судов).
Таким образом, в период средних веков в Европе количество изобретений и открытий увеличивалось в нарастающем темпе, формировались квалифицированные технические кадры не только мастеров, но и инженеров — горных, военных, строительных, корабельных и др. Несомненно, что технические достижения средневековья обусловили развитие научной мысли в эпоху Возрождения.
§2 Наука и техника эпохи Возрождения
Эпоха европейского Возрождения охватывает период XIV-XVI вв. «Возрождение» (от франц. «renaissance» — возрождение, Ренессанс) ─ возврат к ценностям античного мира. В этот период происходит возрождение огромного интереса к античной философии, к античным религиозным и оккультным учениям, к античной литературе и изобразительному искусству. Деятели эпохи Возрождения или (как они себя называли) гуманисты верили, что они формируют новую эпоху, с новым укладом жизни и возрожденными ценностями античного мира. Гуманистами выдвигался идеал нового человека, творца своей судьбы и своего бытия. Пико дела Мирандола (1463-1494) утверждал, что человек ─ единственное в мире существо, наделенное способностью формировать самого себя, опираясь на знания ─ этику и науки о природе.
В эпоху Возрождения блестящее развитие получает литература и изобразительное искусство (живопись, скульптура).
Искусство оказалось вплетено во все сферы человеческой жизни. Огромное влияние оказало искусство и на развитие науки. Наука в эпоху Возрождения становится активной, творческой. Творчество гуманисты воспринимали как одно из главных предназначений человека. Так, Леон Батиста Альберти (1404-1472) ─ писатель, архитектор, теоретик искусства ─ утверждал, что в своей жизненной практике человек должен раскрыть заложенные в нем способности. В этом главная цель его существования. Причем, творчество понималось очень широко ─ от труда скромного ремесленника до высот научной и художественной деятельности.
Изобретатель, мастер, художник, архитектор, ученый ─ профессии, в эпоху Возрождения часто неразделимые!
В наивысшей степени все эти грани человеческой деятельности соединились в творчестве Леонардо да Винчи. Мир его интересов не поддается одномерному определению. Его влекли не только архитектура, скульптура и живопись. Он не с меньшим увлечением изобретал невиданные машины, замысловатые конструкции, придумывал невероятное оружие и музыкальные инструменты, проектировал мосты, фортификационные сооружения, каналы. Он соединил науку, технику и искусство в практических целях. Одним из первых Леонардо применил в науке эксперимент, утверждая, что опыт никогда не обманывает.
В Эпоху Возрождения в Западной Европе произошли изменения во всех сферах жизни человека — в области философской мысли, в литературе, в области художественного творчества, в научном и религиозном аспектах, в социально-политических представлениях, что подготовило научную революцию XVII века.
Крупнейшим научным открытием периода стала гелиоцентрическая модель мира, созданная Н.Коперником, к которой ученый пришел скорее под сильным влиянием чувства гармонии, чем в ходе научных изысканий. Для Н. Коперника, убежденного в простоте, разумности природы, система Птоломея выглядела совсем негармоничной, очень сложной, какой-то нагроможденной. Результатом его сомнений стало создание новой концепции мироустройства. Гелиоцентрическая картина мира с доказательствами была изложена им в труде «О вращениях небесных сфер», который был опубликован незадолго до его смерти и в 1616 г был внесен католической церковью в «Список запрещенных книг». Запрет был снят только спустя более 200 лет.
Научная мысль в эпоху Возрождения была представлена исследованиями по оптике, электричеству, магнетизму, механике.
Среди работ в области математики и механики можно выделить труд Николы Тартальи (1499-1552) «Проблемы и различные изобретения» (1546), в котором он утверждал, что траектория снаряда всегда криволинейна и не содержит прямолинейного участка. Его ученик Джован Бенедетти (1530-1590) создал учение о перспективе и пропорциях, сформулирован «гидростатический парадокс» (сила тяжести жидкости, налитой в сосуд, может отличаться от силы, с которой эта жидкость действует на дно сосуда).
Выдающимся математиком и механиком своего времени был голландец Симон Стевин (1548-1620). Им, в частности, были определены условия равновесия на наклонной плоскости и доказан закон Архимеда.
Научные исследования в области оптики проводил Франческо Мавролика (1494-1575). В своих научных трактатах он пытался уточнить представления об оптике глаза. Им были представлены объяснения причин близорукости и дальнозоркости на основании доказанного утверждения, что хрусталик работает как линза, строящая изображение на сетчатке. Мавролик также впервые указал на семь цветов радуги и показал, что лучи, проходящие через призму, дают такие же цвета, что и в радуге.
Блестящие опыты по магнетизму проводил Джован Батист Порта (1543-1615) и описал их в своей книге «Магнетизм».
Одним из основателей науки «об электричестве и магнетизме» был ученый и врач по профессии Вильям Гильберт (1544-1603). Он провел много экспериментов по электричеству, но создать теорию электромагнитного поля ему не удалось.
Гуманизм Возрождения способствовал утверждению в Европе веротерпимости, уважения к личности, принципов открытости и свободы научного поиска. Это, несомненно, отразилось на развитии сферы гуманитарных наук. В этот период в трудах Н. Макиавелли (1469-1672) было положено начало политологической науки. Являясь одним из ярких представителей идеологов буржуазного государства эпохи первоначального капитала, Н. Макиавелли утверждал, что интерес ─ это движущая сила истории. Могущественнейший из интересов человека ─ приобретение или сохранение частной собственности.
Возникли утопические концепции Т. Мора (1478-1535) и Т. Кампанеллы (1668-1639).
Период первоначального накопления капитала и бурное развитие товарно-денежных отношений как следствие великих географических отношений, захвата и ограбления колоний привели к возникновению первой в истории экономической мысли школы меркантилизма. Представители этой школы рассматривали деньги как абсолютную форму богатства и давали практические рекомендации по его увеличению.
Английским купцом Т. Манном (1571-1641) в общих чертах была разработана теория протекционизма (политика защиты национального рынка).
В это время были изобретены телескоп, микроскоп, ртутный барометр, усовершенствован часовой механизм. Иоганн Гуттенберг создал печатный станок, что по значимости сравнимо с изобретением в древности колеса или письменности.
Первые конструкции телескопов были изобретены Галилеем, Кеплером, Ньютоном. Так, телескоп Галилея состоит из одной выпуклой и одной вогнутой линз, которые позволяют получить прямое изображение удаленного предмета.
Первые сложные микроскопы были изготовлены уже в конце XVI в. Славу же микроскопу принесли работы голландского ученого Антонии Ван Левенгука, открывшего и изучавшего с его помощью мир микроорганизмов. Некоторые его приборы позволили получить увеличение в 300 раз.
Изобретение ртутного барометра связано с возникновением теории атмосферного давления, которую опытным путем подтвердил французский естествоиспытатель Блез Паскаль. Появилась новая единица измерения - миллиметр ртутного столба и в 1644 г. Э. Торричелли был изобретен прибор, с помощью которого можно измерить атмосферное давление - ртутный барометр.
Всевозможные новации наблюдались и в городском строительстве. Новые архитектурные идеи опирались на античные образцы, переосмысленные и улучшенные современными архитекторами. Эти идеи воплощались в камне с помощью более совершенных строительных технологий. В Париже был возведен знаменитый собор Парижской Богоматери, начато строительство Лувра и новой ратуши.
В развитии военной техники можно отметить появление в первой половине XVI в. мушкетов (ружья с курком, снабжённым тлеющим фитилём), изобретение пистолета. При этом (как уже отмечалось выше), повышенный спрос на новые виды оружия привёл к быстрому развитию металлургии, а значит — к увеличению добычи железной, медной и оловянной руд. Интенсивнее стала развиваться металлургия и горнодобывающая промышленность. Создавались и усовершенствовались машины, применявшие в горнорудном деле.
Таким образом, в XIV—XVI столетиях в науке и технике большинства стран Европы произошли важные изменения, подготовившие переход от Средневековья к Новому времени. Прежде всего, стал возрождаться интерес европейцев к полузабытому наследию разрушенной античной культуры. В этот период истории жили знаменитые учёные и инженеры - Леонардо да Винчи, Николай Коперник и Галилео Галилей. Быстро развивались такие науки, как математика, астрономия, механика. Продолжалось становление экспериментального метода на основе соединения науки и практики. Открытия и изобретения, сделанные в этот период, оказали огромное влияние на всю последующую историю человечества.
Эпоха Возрождения ─ особый период в европейской истории. С одной стороны, это расцвет искусства, возрождение античности, гуманизм. Но, с другой стороны, рушились прежние ценности, установки. Формировалась новая концепция человека ─ решительной и предприимчивой личности. В ходе Реформации XVI в. религиозные догмы сменились установками на успех, достаток, социальное и материальное благополучие. Вера в профессию, в которой можно многого достичь сменила веру в Бога.
То есть, рушились прежние установки, ценности, таяла вера во всемогущество церкви, вера в Бога не давала ответов на многие вопросы. И все эти духовные процессы происходили на фоне перемен социальных, общественных, политических.
Но жить без веры ─ нельзя. И возникла вера в науку!
Безусловно, развитие науки и техники в XV-XVI вв. подготовили научную революцию XVII столетия!
Глава 3. Наука и техника в XVII-XVIII вв.
§1 Научная революция в Европе XVII столетия
XVII столетие – важнейший этап в развитие научного познания. С этого века начинается процесс утверждения науки в качестве доминирующей формы постижения бытия. В умах людей утверждается представление о познаваемости мира, о возможности постичь законы, которые им управляют. Наука предстаёт в виде главной производительной силы общества.
«Научная революция» XVII века представлена именами Г. Галилея (1564-1642), И. Кеплера (1571-1630), Р. Декарта (1596-1650), И. Ньютона (1643-1727). В XVII веке были созданы первые научные сообщества нового типа: Лондонское королевское сообщество (1662) и Французская королевская академия наук (1666), функционирующие и по настоящее время.
Стремительность (по сравнению с прошлым периодом) развития научной мысли в XVII столетии, сложность и глубина исследований, были обусловлены развитием научной и технической мысли предшествующего периода, особенно эпохи Возрождения, обмирщением духовной жизни, политикой секуляризации (церковь подчинялась государству, а государству были нужны образованные люди, к тому же развитие науки в целом двигало и военную науку), утверждением рационального мировоззрения.
Значительный вклад в развитие естествознания этого и последующего периодов внесли труды Г. Галилея (1564-1642). Он установил законы инерции, свободного падения и движения тел по наклонной плоскости, сложения движений; открыл изохронность колебаний маятника; первым исследовал прочность балок, заложив основы сопротивления материалов. Велика роль Галилея в становлении и развитии экспериментального метода в науке, которым он уже владел в полной мере. В «Диалоге о двух главнейших системах мира ─ Птоломеевой и Коперниковой» (1632) Галилей опроверг Аристотелевское представление о неизменности небесного мира (возникают новые звезда, на Луне есть горы, а на Солнце пятна), выдвинул два базовых принципа механики (принцип инерции и принцип относительности), доказал гелиоцентричность устройства мира. Создание Галилеем перспективы (так первоначально называли телескоп) стало настоящей революцией в оптике. Он понял и доказал, что очковые стекла для изготовления зрительных труб не подходят, так как технология их обработки кустарна. Линзы для телескопа должны проходить более точную обработку. Его усовершенствованный инструмент увеличивал в 32 раза (прежние приборы давали увеличение всего в 3—6 раз). Телескопическая система состояла из двух линз: одна выпуклая и одна плосковогнутая (окуляр). С помощью своего телескопа Галилей открыл спутники Юпитера, горы на Луне, сложность структуры Млечного Пути.
Весьма действенную методологию научных исследований, определившую возникновение и развитие новых научных направлений, дифференцировавших естествознание в XVIII в., создал выдающийся английский математик XVII-XVIII вв. И. Ньютон (1643-1727). Его «многопрофильная» научно-исследовательская деятельность привела к потрясающим результатам: обоснование законов движения материальных тел и воздействия центробежной силы на предметы, движущиеся по круговой орбите; открытие закона всемирного тяготения и объяснение мироустройства с помощью законов механики; систематизация и обобщение известных на тот момент знаний по физике в работе «Математические начала натурфилософии»(1687г.). Независимо от Г. Лейбница И. Ньютоном были разработаны дифференциальное и интегральное исчисления. Одним из интересовавших И. Ньютона направлений естествознания была оптика. Ученый пытался понять природу света, проводил опыты по дисперсии (разложению на цвета) солнечного света. Был сторонником и основоположником корпускулярной природы света, главным доводом в пользу которой он считал несовместимость прямолинейности распространения света с волновым характером (трактат «Оптика», 1704). Оптические эксперименты И. Ньютона привели его, в частности, к изобретению в 1668 г. зеркального телескопа-рефлектора, позволявшего увидеть спутники Юпитера.
Несомненный вклад в развитие научной мысли, становление классического естествознания внесли труды французского математика и исследователя природы Р. Декарта (1596-1650), который сформулировал закон отражения и преломления (отношения синуса угла падения к синусу угла преломления есть величина постоянная), помощью эффекта преломления объяснил явления радуги, ирландца Роберта Бойля (1627-1691), открывшего газовый закон, английского физика Роберта Гука, проводившего исследования, которые приблизили открытие закона всемирного тяготения, а также открывшего фундаментальный закон, устанавливающий зависимость между механическими напряжениями в упругом теле и вызываемыми ими деформациями. Голландским ученым Христианом Гюйгенсом (1629-1695) была создана волновая теория света, усовершенствован телескоп и изобретены маятниковые часы.
Научное наследие оставили также Франческо Гримальди (открыл явление дифракции и ввел этот термин), Пьер Ферма (принцип Ферма), Олаф Ремер (доказал конечность скорости света). Проблемами оптики занимался известный астроном И. Кеплер. Им были разработаны основы современной геометрической оптики, но ему не удалось найти закон преломления.