Главная » Просмотр файлов » Мартинсон Л.К., Смирнов Е.В. - Эдементы квантовой механики

Мартинсон Л.К., Смирнов Е.В. - Эдементы квантовой механики (1076135), страница 4

Файл №1076135 Мартинсон Л.К., Смирнов Е.В. - Эдементы квантовой механики (Мартинсон Л.К., Смирнов Е.В. - Эдементы квантовой механики) 4 страницаМартинсон Л.К., Смирнов Е.В. - Эдементы квантовой механики (1076135) страница 42018-01-09СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

Такое описание осуществляется с помощью операторов.В квантовой механике физическая величина характеризуется не своим численным значением, а линейным эрмитовым оператором, которымэта величина представляется. Линейность операторов необходима длявыполнения принципа суперпозиции, а эрмитовость — для того, чтобы значение физической величины, получаемое в результате измерения,Измерение физических величин в квантовомеханических системах23было действительным. Каждой физической величине (координате, импульсу, моменту импульса и т.д.) ставится в соответствие свой оператор(оператор координаты, оператор импульса, оператор момента импульса ит.д.).Приведём выражения для операторов основных физических величин.• Операторы координаты:ŷ = y ;(4.39)ẑ = z .• Операторы проекции импульса:p̂x =~ ∂;i ∂xp̂y =~ ∂;i ∂y~ ∂.i ∂z(4.40)L̂z = x̂p̂y − ŷ p̂x .(4.41)p̂z =• Операторы проекции момента импульса:L̂x = ŷ p̂z − ẑ p̂y ;L̂y = ẑ p̂x − x̂p̂z ;Отметим, что в сферических координатах вид оператора L̂z заметноупрощается:~ ∂,(4.42)L̂z =i ∂ϕгде ϕ — азимутальный угол.• Оператор полной энергии (гамильтониан):Ĥ = ÊK + Û ,где ÊK — оператор кинетической, a U — оператор потенциальнойэнергии.Оператор кинетической энергии ÊK имеет вид:ÊK =p̂21 2=p̂x + p̂2y + p̂2z =2m02m0!~2∂2∂2∂2~2=−++=−∆.2m0 ∂x2 ∂y 2 ∂z 22m0Оператор потенциальной энергииÛ = U (x, y, z) .(4.43)Измерение физических величин в квантовомеханических системах24Таким образом, гамильтониан можно найти, используя выражениеĤ = −~2∆ + U (x, y, z) .2m0(4.44)Подчеркнём, что соотношения, которые классическая физика устанавливает для связи между значениями физических величин, в квантовой механике определяют связь между операторами этих величин.Один из основных постулатов квантовой механики утверждает, чтоединственными возможными результатами измерения физической величины f , которой соответствует оператор F̂ , являются собственные значения этого оператора, т.е.

собственные значения λn уравненияF̂ un = λn un .(4.45)Здесь un = un (x, y, z) — собственные функции оператора F̂ . Системасобственных функций {un } представляет собой, как правило, полнуюортонормированную систему функций. Следовательно, волновую функцию Ψ, которая описывает какое-либо состояние физической системы,можно разложить в ряд по собственным функциям UnZX(4.46)Ψ=Cn un , Cn = u∗n ΨdV .nVВ (4.46) интегрирование ведётся по всей области изменения пространственных переменных.Вероятность того, что при измерении физической величины f будетполучено численное значение λn ,P (λn ) = |Cn |2 .(4.47)Среднее значение физической величины f , которой соответствуетоператор F̂ , в состоянии, описываемом нормированной волновой функцией Ψ, естьZΨ∗ F̂ ΨdV .hf i =(4.48)VВажным в квантовой механике является вопрос об одновременномизмерении (одновременном точном определении) двух физических величин.

Необходимым и достаточным условием возможности одновременного измерения двух физических величин f и g является коммутативность25Измерение физических величин в квантовомеханических системахсоответствующих им операторов F̂ и Ĝ, т.е. выполнение равенства[F̂ , Ĝ] ≡ F̂ Ĝ − ĜF̂ = 0 .(4.49)Оператор [F̂ , Ĝ] называется коммутатором операторов F̂ и Ĝ.4.1Примеры решения задач☞ Задача.4.I. Частица массой m0 находится в одномерной бесконечно глубокой прямоугольной потенциальной яме шириной a в первомвозбуждённом состоянии.

Найдите среднее значение проекции импульсачастицы hpx i и квадрата импульса hp2 i.☞ Решение.Волновая функция частицы в одномерной бесконечноглубокой прямоугольной потенциальной яме имеет вид /см. (refeq3.3)/sΨ2 (x) =22πxsin,aaгде n = 1, 2, 3, . . .. Первому возбуждённому состоянию частицы соответствует значение n = 2. Решим сначала задачу в общем случае для произвольного значения квантового числа n, а потом в полученное решениеподставим значение n = 2.Согласно (4.48) среднее значение проекции импульсаZahpx i = Ψ∗n (x)p̂2 Ψn (x) dx =0Zaa~ 2πnx ∂πnx~2 πnx = ·sinsindx =sin=0i aa ∂xaiaa 0(4.50)0Таким образом, hpx i = 0. Существенно, что ответ не зависит от n, т.е.

отуровня, на котором находится частица в потенциальной яме. Более того,можно показать, что результат, полученный здесь для конкретного вида потенциальной ямы, оказывается справедливым и для более общегослучая: среднее значение проекции импульса частицы, которая в стационарном состоянии имеет дискретный энергетический спектр, равнонулю.Интересно отметить, что значение hpx i = 0 для частицы в яме получается и в классической механике.

Для классической частицы этотИзмерение физических величин в квантовомеханических системах26результат очевиден, так как частица движется вдоль одной оси, отражаясь от стенок ямы, а её импульс направлен то в одну, то в другую,противоположную первоначальной сторону. Поэтому среднее значениеhpx i равно нулю.Вычислим теперь среднее значение квадрата импульса hp2 i.

Поскольку мы имеем дело с одномерным случаем, тоhp2 i = hp2x i = −~2∂2.∂x2В соответствии с (4.48) для hp2 i находимZaZa2πnx ∂ 2 πnx2∗22hp i = Ψn (x)p̂ Ψn (x)dx = −~sindx =aa ∂x2a0= −2~2a!−π 2 n2a2! Za0sin2∂22~2 πn2 ax=· 2 · .∂d2aa2000000000000000000 (4.51)Таким образом, hp2 i =окончательный ответπ 2 ~2 n2.a2Подставляя значение n = 2, получаем4π 2 ~2.a2Отметим, что хотя среднее значение проекции импульса hpx i равно нулю,среднее значение квадрата импульса hp2 i отлично от нуля.☞ Задача.4.2.

Определите возможные результаты измерения проекции момента импульса Lz и их вероятности для частицы, находящейсяв состоянии, описываемом волновой функцией Ψ(ϕ) = A cos2 ϕ, где ϕ —азимутальный угол.☞ Решение.Прежде всего найдём нормировочную константу A.Из условия нормировки следует, что2π2πZZ∗2Ψ (ϕ)Ψ(ϕ) dϕ = Acos4 ϕ dϕ .hp2 in=2 =R2π04Поскольку 0 cos ϕ dϕ =A = √23π .

Таким образом,03π,4то для A получаем следующее значение:2Ψ(ϕ) = √ cos2 ϕ .3πИзмерение физических величин в квантовомеханических системах27Оператор проекции момента импульса L̂z в сферических координатахимеет вид~ ∂L̂z =,i ∂ϕа его нормированные собственные функции и собственные значенияопределяются выражениями [1]1um (ϕ) = √ eimϕ ,2πLz = m~ ,где m = 0, ±1, ±2, . .

.. Разложим волновую функцию Ψ(ϕ) по собственным функциям оператора L̂z :22 1 + cos 2ϕ1 + cos 2ϕ√Ψ(ϕ) = √ cos2 ϕ = √ ·=.23π3π3πВ соответствии с формулой Эйлераeiα = cos α + i sin α,представим cos 2ϕ следующим образом: cos 2ϕ = 12 (ei2ϕ + e−i2ϕ ). Приэтом разложение волновой функции Ψ(ϕ) принимает следующий вид:111Ψ(ϕ) = √1 + ei2ϕ + e−i2ϕ =223πsss2 1 i·0·ϕ1 1 i·2·ϕ1 1 −i·2·ϕ√ e√ e√ e=++=3 2π6 2π6 2πsss211u0 (ϕ) +u+2 (ϕ) + +u−2 (ϕ) . (4.52)=366Поскольку в разложении (4.52) присутствуют только собственныефункции оператора L̂z , отвечающие значением m = 0 и m = 2, то этоозначает, что из всего спектра собственных значений оператора L̂z длячастицы, находящейся в данном состоянии, реализуютсяLz = 0,Lz = 2~,Lz = −2~.Именно эти значения и будут найдены в результате измерений. Вероятность получить при измерении какое-либо одно из них определяется, согласно (??), квадратом модуля коэффициента разложения волновойЗадачи домашнего задания28функции Ψ(ϕ) по соответствующей собственной функции um (ϕ).

Какследует из (4.52),211P (0) = , P (2~) = , P (−2~) = .3665Задачи домашнего заданияСтудент решает задачи, номера которых определяются из таблицы вариантов, предлагаемой кафедрой физики.1. Вычислите длину волны де Бройля молекул водорода, соответствующую средней скорости их теплового движения. Газ имеет комнатную температуру T = 300 К.2. Вычислите длину волны де Бройля молекул водорода, соответствующую их наиболее вероятной скорости при температуре T = 273 К.3. Рассчитайте наиболее вероятную длину волны де Бройля молекул кислорода, находящегося в термодинамическом равновесии притемпературе T = 273 К.4. Электрон движется по окружности радиусом R = 0,5 см в однородном магнитном поле с индукцией B = 8·10−3 Тл.

Определите длинуволны де Бройля такого электрона.5. Две одинаковые нерелятивистские частицы движутся перпендикулярно друг другу, имея длины волн де Бройля λ1 и λ2 . Найдитедлины волн де Бройля каждой частицы в системе их центра масс.6. Нерелятивистская частица массой m1 с кинетической энергией E1испытывает упругое лобовое соударение с покоящейся частицеймассой m2 .

Найдите дебройлевские длины волн частиц после соударения в системе отсчёта, связанной с центром масс этих частиц.7. Вычислите длину волны де Бройля электрона, движущегося в атоме водорода на n−й стационарной орбите.8. Параллельный пучок электронов с кинетической энергией EK =25 эВ испытывает дифракцию на плоской щели шириной b = 5 мкм.Оцените ширину центрального дифракционного максимума на экране, расположенном на расстоянии l = 1 м от щели.Задачи домашнего задания299.

Узкий пучок моноэнергетических нерелятивистских электронов падает нормально на поверхность монокристалла. В направлении, составляющем угол α = 55◦ с нормалью к поверхности, наблюдаетсямаксимум отражения электронов второго порядка. Определите скорость падающих электронов, если расстояние между отражающимиатомными плоскостями кристалла d = 0,2 нм.10.

Узкий пучок моноэнергетических нерелятивистских электронов испытывает при падении на монокристалл интенсивное отражениечетвёртого порядка. Расстояние между отражающими атомнымиплоскостями d = 0,21 нм. Определите кинетическую энергию падающих электронов, если угол между падающим и отражённымэлектронными пучками α = 90◦ .11. Моноэнергетический пучок нерелятивистских электронов зеркально отражается от поверхности монокристалла, испытывая брэгговское отражение. На сколько отличаются скорости электронов длядвух последующих порядков отражения? Пучок электронов падает под углом скольжения θ = 30◦ . Расстояние между соседнимикристаллическими плоскостями d = 1,65·10−10 м.12. Пучок электронов с кинетической энергией EK = 15 кэВ проходитчерез тонкую поликристаллическую золотую фольгу, а затем попадает на фотопластинку. Области почернения на пластинке имеютформу концентрических колец с центрами на оси пучка.

Характеристики

Тип файла
PDF-файл
Размер
294,73 Kb
Тип материала
Предмет
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6439
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее