Детали машин (1066356), страница 6
Текст из файла (страница 6)
Достоинства:
– простота и надежность конструкции
– сравнительно низкая стоимость
– удобство сборки и разборки
Недостатки:
– ослабляют вал и ступицу шпоночными пазами
– вызывают значительную концентрацию напряжений
– вызывает эксцентричность нагружения в месте посадки детали
Существует 2 вида шпоночных соединений:
– ненапряженное (призматическими, сегментными или круглыми шпонками)
– напряженное (штифтами или призматическими шпонками)
| Шпоночные пазы в ступице выполняются давлением или протягиванием, на валу фрезерованием пальцевой или дисковой фрезой. |
Соединение сегментными шпонками
По принципу работы схожы с призматическими, но обладают некоторыми преимуществами.
– Пазы на валах обрабатываются дисковыми фрезами большей производительностью
–Крепление шпонок на валу надежнее из-за большей глубины врезания.
Недостаток:
– значительно ослабляет вал
Соединение цилиндрическими
шпонками
Как правило, для соединения венца со ступицей колеса. Шпонка может быть гладкой или нарезной. Центр шпонки должен быть смещен в сторону более слабого материала на величину e.
Расчет шпоночного соединения
Узкие шпонки дополнительно рассчитываются на срез:
Шлицевые соединения
Образованы выступами – зубьями на валу, которые входят со впадины-пазы ступицы.
По сравнению со шпоночными соединениями имеют преимущества:
1. Большую нагрузочную способность
2. Более высокое сопротивление усталости вала
3. Лучшую технологичность и точность изготовления
Внутренние шлицы получают протягиванием и шлифованием центрирующих поверхностей. Зубья получают фрезерованием червяными фрезами. По форме поперечного сечения различают:
– прямобочные
– эвольвентные
– треугольные
Шлицевые соединения могут быть подвижные и неподвижные.
По типу воспринимаемой нагружки различают соединения нагруженные:
– только вращающим моментом
– вращающим моментом и поперечной силой
– вращающим моментом и изгибающим моментом
– комплексной нагрузкой
Расчет на смятие
[]СМ , где Kg – коэффициент динамичности, KСМ – коэффициент концентрации нагрузки, ℓ – рабочая длина соединения, SF – удельный суммарный статический момент площади рабочих поверхностей соединения относительно оси вала
Расчет на износ
, где KИЗН – коэффициент концентрации нагрузки
Соединение деталей с натягом
Соединение с натягом осуществляется одним из способов:
1. с нагревом охватываемых деталей
2. с охлаждением охватываемых деталей
3. запрессовкой
4. с применением гидрораспора (подвод масла под давлением в место сопряжения)
Расчетом находится натяг с подбором соответсвующей посадки. В зависимости от этого определяется осевое усилие при запрессовке или t нагрева (охлаждении) деталей.
РЕЗЬБОВЫЕ СОЕДИНЕНИЯ
Помимо выполнения крепежных функуий винтовые пары широко применяются для преобразования вращательного движения в поступательное, т.е. выполняют роль механизмов.
Достоинства:
– рациональная форма, компактность и конструктивная простота
– высокая несущая способность
– удобство сборки и разборки
– широкие регулировочные возможности
Недостатки:
– уязвимы при переменных нагрузках
– склонность к самоотвинчиванию при вибрациях
Основные параметры резьбы
d – наружный диаметр;
d1 – внутренний диаметр;
d2 – средний диаметр;
£ – угол профиля резьбы;
p – шаг резьбы;
P0 – ширина основания;
= – P0/P – коэффициент использования резьбы;
H – высота гайки;
t = n0P – ход резьбы, для однозаходной резьбы t = P
n0 – число заходов;
– угол подъема винтовой линии;
При вращении винта на опорной поверхности витка возникает окружная сила трения FТР =FП f = F f /[cos(/2) cos ]. Составляющая силы трения на плоскость, перпендикулярную оси винта FТР = FТРcos = F f/ cos(/2) = Ff , где f = f/cos(/2) – приведенный коэффициент трения в резьбе, f – коэффициент трения пары материалов винта и гайки.
Классификация резьб
По форме поверхности, на которой нанесена резьба:
– цилиндрические
– конические
Конические резьбы обеспечивают без специальных уплотнений герметичность соединения. Применяются для соединения трубопроводов, гидросистем, бензосистем и т.д.
По направлению винтовой линии: правые и левые. Левые применяются в случаях, когда это обусловлено кинематикой механизма и для предохранения самоотвинчивания.
По назначению:
– крепежные, применяемые для резьбовых соединений
– крепежно-уплотнительные (трубопроводы, арматуры)
– резьбы винтовых механизмов (преобразование движения)
По числу винтовых линий: однозаходные и многозаходные.
Характеристика крепежных и крепежно-уплотнительных резьб.
Они бывают метрические и дюймовые. В машиностроении применяются метрические резьбы с крупным и мелкими шагами. Последние предназначены для нарезания на тонкостенных деталях и валах. Они также применяются для регулировки и в случаях ответственных соединений. Применение дюймовых цилиндрических резьб огранивается случаями замены существующих деталей или выполнения необходимых сопряжений с импортными деталями. Дюймовые конические резьбы используют как крепежно-уплотняющие.
Расчет резьб
Под действием осевого усилия F резьбы работают и рассчитываются на:
1) срез условно по сечениям винта и гайки
2) на смятие и износостойкость
Расчет резьб на срез
Уравнение прочности СР = F/A []СР 0,6 []P. Здесь площадь среза у винта AВ = d1H, у гайки AГ = dH.
Расчет на смятие
На смятие работают и рассчитываются резьбы крепежные изделия, у которых поверхности контакта витков винта и гайки проскальзывают только в процессе затяжки соединения. Площадь смятия принимается как проекция контактной поверхности резьбы на плоскость, нормальную оси винта (перпендикулярную силе F).
AСМ = (d2/4 – d12/4) H/P, где H/P – число поверхностей смятия (рабочих витков) на высоте гайки H.
Уравнение прочности: СМ = F/AСМ = 4FP / [(d2-d12)H] []СМ 0,5 []P.
Если крепежное изделие стандартно, то H 0,8d из условие прочности резьбы на срез и смятие.
Расчет на износостойкость
На износостойкость рассчитываются подвижно контактирующие резьбы грузовых винтовых механизмов. Расчет ведется по давлению на рабочих поверхностях витков резьбы. p = F /A = 4FP / [(d2-d12)H] [p], где A – площадь, [p] – допускаемое давление – параметр износостойкости, устанавливаемый опытным путем.
Ограничение высоты гайки
Вследствие различных деформаций болта (неравномерное распределение нагрузки по виткам) целесообразно конструктивно ограничивать высоту гайки H 2,5d. Если по расчету получается больше, то следует увеличить диаметр резьбы.
Расчеты незатянутых и затянутых болтов
При стандартизации деталей резьбовых соединений соотношения их элементов устанавливается так, чтобы лимитирующим фактором была прочность тела болта. Это позволяет при их использовании ограничиться расчетом только болта. В зависимости от условий работы обыкновенные болты могут быть незатянутыми и затянутыми.
Незатянутые болты характеризуются отсутствием начальной затяжки. Здесь расчетной является внешняя осевая сила F. Незатянутые болты работают и рассчитываются на растяжение. Проверочный расчет:
P = F/A= 4F /(d12) []
Проектный расчет:
У затянутых болтов сила F возникает при затяжке. В других случаях осевая сила на винт создается внешней нагрузкой (домкраты). При вращении болтов преодолеваются 2 момента сопротивлению: момент в резьбе TP и момент на торце TT. Они суммируются на рукоятке ключа T = TP – TT. В опасном сечении винта действует полная сила F. Эпюры F и T строят для выявления опасного сечения и характера напряженного состояния винта.
Момент трения на торце
В зависимости от того, какая из деталей вращается, торец может быть кольцевым или сплошным (круговым). В общем случае для кольцевого торца элементарная сила трения:
dFТР = dAp fT, где p = 4F/{(D2–d02)} – давление. Элементарный момент трения dTT = dApfT, где dA = dd.
Момент трения на торце TT = FfTdT/2
Диаметр трения:
КПД
Для пары винт-гайка при завинчивании
КПД винтового механизма (с учетом трения на торце)
Самоторможение винтовой пары соблюдается при условии < = arctg f . Т.к. у крепежных резьб это условие соблюдается, то они являются самотормозящими.
Затянутые болты, грузовые и ходовые винты работают и рассчитываются на сложное сопротивление.
Проверочный расчет:
P = 4F/(d12), K = T2/ (0,2d13),
Проектный расчет
Т.к. напряжение кручения можно определить только при известных размерах, то задача проектного расчета решается приближенно
С – коэффициент, учитывающий напряжение кручения.
по ГОСТу с последующим проверочным расчетом.















