Детали машин (1066356), страница 5
Текст из файла (страница 5)
5. допускают бесступенчатое регулирование
6. обладают хорошими амортизирующими и демфирующими свойствами
7. возможность больших межосевых растояний
8. универсальность расположения валов и их количество в передаче
9. может одновременно выполнять функции муфты сцепления.
Недостатки:
1. большие габариты
2. малый КПД
3. малая долговечность
4. большие эксплуатационные расходы
5. непостоянство передаточного отношения.
Виды ременных передач
Относятся к передачи трением с гибкой связью. Состоит из 2-х или более шкивов и гибкой связи. Гибкой связью служит ремень прямоугольного, трапециидального или круглого сечения.
Различают виды ременных передач:
1. плоскоременные
2. клиноременные
3. многоклиновые
4. поликлиновые
5. круглоременные
Типы ременных передач
1. Открытая
2. Перекрестная
3. Полуперекрестная
Способы натяжения ремня
Для обеспечения необходимой силы трения между ремнем и шкивами ремень должен быть натянут. Существуют следующие методы:
1. за счет упругости ремня
а) укорочение прошивки
б) перемещение ведущего шкива, который расположен на валу электродвигателя, для чего электродвигатель ставят на салазки.
2) Автоматически
а) с помощью натяжного ролика, а также пружиной или грузом, воздействующим на качающийся ролик.
б) реактивным моментом, действующим на качающуюся сторону
Виды ремней
I. Плоские ремни. Применяют 2-х типов:
– прорезиненные бумажные и кожаные
– слойные сдвоенные
II. Клиновые ремни
Нагрузочная способность выше, чем у плоскоременных. Бывают 3-х видов:
– нормальные bp/h = 1,4
– узкие bp/h = 1
– широкие или вариаторные ремни
bp/h = 2…4
III. Многоклиновые
IV. Поликлиновые
Имеют клиновые ребра, работающие в канавках шкива.
V. Круглоременные ремни
Применяют для пространственных передач при нескольких ведомых шкивах.
Геометрия клиноременной передачи
d1, d2 – диаметры ведущего и ведомого шкивов, £1, £2 – углы обхвата на шкивах, – угол наклона ветви ремня к оси центра, а – межосевое расстояние.
£1,2 = 180 2, «+» для большего, «–» для меньшего. = arcsin[(d2 – d1) / 2a]
amin =0,55 (d2+d1)+h, где h – высота сечения ремня
amax = 2(d2+d1)
Силы и напряжения в ремне
1. Силы растяжения F1 и F2
2. Напряжение изгиба на шкивах (на ведомом меньше)
3. Напряжение, вызываемое силой предварительного натяжения F0= Ft = 2T1 / d1, 0 = F0 / A. Для плоскоременной передачи A = b , для клиноременной A = A1 z, где b – ширина ремня, – его толщина, A1 – площадь сечения 1-го клиноременного ремня, z – число ремней
4. На холостом валу возникает центробежная сила FЦ = A V2, где – плотность, A – площадь, V – скорость.
5. Напряжение, вызываемое центробежной силой Ц = FЦ / A= V2.
Уравнение Эйлера
F1 – сила набегающей ветви;
F2 – сила сбегающей ветви;
– угол обхвата
f – приведенный коэффициент трения
f = f / sin (/2), где – угол клина.
При прохождении ремнем шкива возникает напряжение изгиба
= y E / , где E – модуль упругости, y – координата волокон ремня от нейтральной линии, – радиус по нейтральной линии ремня.
Диаграмма напряжений в ремне
max = 1 + U = m t / (m–1) + U + Ц,
Нагрузка на валы передачи
Коэффициент тяги:
= (F1– F2) / (F1 + F2), = Ft / 2F0, где Ft – полезная нагрузка, F0 – сила предварительного натяжения
Критерий работоспособности ременной передачи
Работоспособность ременной передачи может ограничиваться:
1. сцеплением ремня со шкивами (тяговая способность)
2. долговечность ремня
Тяговая способность зависит от предварительного натяжения F0 или 0, а также от материала ремня, угла обхвата, диаметра шкивов,
Долговечность ремня зависит от сопротивления усталости его элементов
Pmax NE = const, где p – степень кривой усталости, p = 11 для клиноременной, p = 6 для плоскоременной.
NE = 3600 U Zm Lh / ИЗГ
U – частота пробега ремня
Zm – число шкивов
ИЗГ – коэффициент, учитывающий разую степень изгиба на большом и малом шкивах,
Lh – ресурс работы
Потери в передаче и ее КПД
Потери:
1. на упругий гистерезис при переменном деформировании изгиба и растяжения
2. на скольжение ремня по шкивам
3. на трение в подшипниках валов передачи
4. на аэродинамическое сопротивление движения ремня и шкивов
Зависимость скольжения от КПД:
Расчет ременных передач
Расчет производится по полезному напряжению или эталону мощности
K = Ft / (A1 z) < [K] или p = KAV/1000
A1 – площадь поперечного сечения одного ремня, z – число ремней
[K] = K0 C£ CP, где K0 – определяется из условия обеспечения тяговой способности при оптимальном коэффициенте тяги 0 и долговечности NE или Lh
С£ – угол обхвата
СP – режим работы
За базу выбирается эталонная передача с двумя шкивами с передаточном числом 1, = 180. Ремнем эталонной длины и имеющего эталонную скорость V при ресурсе работы Lh = 25 тыс. часов, работа спокойная, запас сцепления = 1, 5.
Необходимое число ремней определяется по формуле z = Ft / ([K] A1)
ЦЕПНЫЕ ПЕРЕДАЧИ
Состоит из ведущей и ведомой звездочек и охватываемой цепи. Применяются с двумя или несколькими звездочками.
Цепные передачи применяют при:
1. средних межосевых расстояниях, при которых зубчатые передачи требуют промежуточных ступеней или паразитных зубчатых колес
2. жестких требованиях к габаритам
3. необходимости работы без проскальзывания
Достоинства:
– возможность применения в значительном диапазоне межосевых расстояний
– габариты, меньшие, чем у ременной передачи
– отсутствие проскальзывания
– высокий КПД
– малые силы, действующие на валы, т.е. нет необходимости в предварительном натяжении
Недостатки:
– работает в условиях отсутствия жидкостного трения
– требует большой степени точности установки валов, чем у ременных передач, регулировки, смазывания
– неравномерность хода цепи, что приводит к циклическим нагрузкам и колебанию передаточного отношения.
Различают приводные и тяговые цепи. К тяговым относятся пластинчатые и круглозвенные. К приводным цепям относятся роликовые, зубчатые, втулочные.
Роликовые цепи
ПРЛ – роликовые однорядные цепи нормальной точности
ПР – роликовые цепи повышенной точности
ПРД – роликовые длиннозвенные цепи (с удвоенным шагом, поэтому легче и дешевле, применяются при малых скоростях)
ПВ – втулочные (не имеют роликов, поэтому дешевле и меньше габариты)
ПРИ – роликовые цепи с изогнутыми пластинами (при больших динамических нагрузках)
Состоят из внутренних и наружных пластин, шарнирно соединенных с помощью валиков и втулок. Бывают однорядные и многорядные. Многорядные применяют при повышенных нагрузках и скоростях с целью уменьшения шага цепи.
Трение-скольжение между звездочкой и цепью заменяют трением –качения.
Зубчатые цепи
Достоинства:
– меньший шум, чем у остальных
– повышенная кинематическая точность
Недостатки:
– тяжелые
– дорогие
– сложные в изготовлении
Материалы, применяемые в цепных передачах
Материалы и термическая обработка цепей имеют решающее значение для их долговечности. Пластины выполняют из среднеуглеродистых и легированных сталей. Звездочки у цепных передач по конструкции аналогичны зубчатым колесам и отличаются только зубчатым венцом. Для ведомых звездочек при скорости скольжения 3 м/с применяют серые чугуны и стальное литье. В среднескоростных передач звездочки изготавливают из цементирующих сталей. При необходимости бесшумной работы звездочки изготавливают из формальдегида или пластмассы.
Влияние числа зубьев малой звездочки на долговечность цепной передачи
1. Увеличение z1 приводит к увеличению угла поворота шарнира при набегании на звездочку, что способствует снижению износа.
2. При увеличении z1 уменьшается допустимая величина удлинения цепи в результате износа.
3. Когда компактности предпочитают наибольшую долговечность, число зубьев малой звездочки принимают оптимальным: для втулочных и роликовых цепей z1 = 29 – 2U, для зубчатых цепей z1 = 35 – 2U, где U – передаточное отношение. В целях равномерного износа при нечетном числе звеньев цепи z1 желательно брать тоже нечетное.
Геометрия цепной передачи
d1 = p / sin(180/z1), d2 = p / sin(180/z2)
amin (z2 – z1) p /, где p – шаг цепи. Увеличение a способствует долговечности, т.к. уменьшается число пробегов цепи.
Межосевое расстояние ограничивают во избежание чрезмерного натяжения цепи под действием собственной силы тяжести: amax 80 p. Оптимальное значение a = (30…50)p. Число звеньев цепи:
Для нормальной работы цепь должна иметь предварительное натяжение, т.к. из-за вибрации может произойти соскок цепи. Провисание цепи f = 0,02a < 45. При угле наклона > 45 провисание f = (0,01 … 0,015)a. Для передач с регулируемым межосевым расстоянием провисание уменьшают на величину = (0,02…0,04)а.
СОЕДИЕНИЕ ВАЛ-СТУПИЦА
Предназначена для передачи вращающегося момента и осевой нагрузки с вала на ступицу и наоборот. Соединение работает зацеплением или трением.
К работающим зацеплением относятся шпоночные, шлицевые, штифтовые соединения.
К работающим трением относятся соединения с натягом, клеймовые, на конических втулках и концевые.
Шпоночное соединение















