Детали машин (1066356), страница 4
Текст из файла (страница 4)
Меры снижения концентрации напряжений
1) Конструктивные,
a) увеличение радиуса галтели
б) увеличение длины ступицы по сравнению с посадочной величиной паза
в) поднутрение заплечика (увеличивает длину базирования ступицы)
2) Технологические – создание в наружных слоях вала остаточных напряжений сжатия путем азотирования, цементации, обдувки и т.д.
Критерий работоспособности валов и осей
1) статическая прочность
2) сопротивление усталости
3) жесткость (изгибная и крутильная)
4) виброустойчивость
Оси работают только на изгиб
ИЗГ = M/WP []ИЗГ
Валы работают на изгиб и на кручение
Проектирование вала
Производится в 3 этапа:
1) Определение исходного диаметра вала из расчета на кручение
dВАЛА = С 3T = 3(T / 0,2[])
2) Конструирование вала (эскиз)
Виды нагрузок на вал
Нагрузки на вал могут быть не вращающимися и вращающимися вместе с валом.
1) не вращающиеся – силы от зубчатых передач, ременных, цепных
2) вращающиеся оказывают постоянное действие на вал.
Проверочный расчет вала
При проверочном расчете вала определяют запасы прочности в опасном сечении.
Коэффициент перегрузки КП = 2 TПУСК/TНОМ.
a) проверка на статическую прочность
Запасы прочности по пределу текучести но нормальным и касательным напряжениям:
Коэффициент запаса прочности по пределу текучести при совместном действии изгиба и кручения
б) проверка на усталостную прочность
Суммарное число циклов нагружения за ресурс вала:
N = 60n nЗ Lh , где
Lh – ресурс работы передачи,
nЗ– число зубьев зацеплении,
n– частота вращения.
Приведенное число циклов нагружения: NE = N H , где H – режим работы, НАПРЕССОВКИ = 6, ПРОЧИЕ КОНЦЕНТРАЦИИ = 9
Коэффициент долговечности:
в) параметры цикла изменения напряжения
При расчете вала на изгиб момент изменяется по симметричному циклу
При расчете вала на кручение вращающийся момент изменяется по отнулевому циклу:
Коэффициент понижения допускаемых напряжений
Запасы прочности по пределу выносливости
Расчет вала на прочность
U = MU/W
КР = T/WP
ПОДШИПНИКИ КАЧЕНИЯ
Преимущество подшипников качения по сравнению с подшипниками скольжения:
1. меньше потери на трение
2. меньше осевые габариты
3. проще в обслуживании
4. дешевле
Недостатки:
1. значительнее диаметральные размеры
2. хуже воспринимают ударные нагрузки, вследствие линейного или точечного контакта
3. имеют ограничения по частоте вращения
4. подшипники не разъемные
Классификация подшипников качения
По направлению воспринимающей нагрузки:
– радиальные (только радиальную нагрузку)
– радиально-упорные и упорно-радиальные (воспринимают радиальную и осевую нагрузку)
– упорные – воспринимают только осевую нагрузку)
По форме тел качения и числу их рядов:
0 – шариковый однорядный
1 – шариковый, двухрядный
2 – роликовый с короткими цилиндрическими роликами
3 – роликовый, самоустанавливающийся (сферический) с бочкообразными роликами
4 – роликовый (игольчатый) с длинными цилиндрическими роликами
5 – роликовый с витыми цилиндрическими роликами
6 – шариковый радиально-упорный
7 – роликовый конический радиально-упорный
8 – шариковый упорный подшипник
9 – роликовый упорный подшипник
В зависимости от размеров и нагрузочной способности подшипники делятся на серии: 1-а и 7-ая – особо легкая, 2-ая серия – легкая, 3-ая – средняя, 4 – тяжелая, 5-ая серия, 6-ая серия – средняя широкая, 8-ая и 9-ая – сверхлегкая.
Также существует 5 классов точности: 0, 6, 5, 4, 2.
Материалы подшипников
Кольца и тела качения изготавливают из хромистых материалов или хромоникелевых, с твердостью от 61 до 66 HRC. Сепараторы делают из бронзы, стали, латуни и текстолита.
Виды разрушений
1. усталостное выкрашивание рабочих поверхностей тел качения и беговых дорожек колец
2. местные остаточные деформации на беговых дорожках
3. абразивное выкрашикание
4. задиры рабочих поверхностей
5. поломка колец и сепараторов.
Подбор подшипников качения
Подшипники подбирают из каталога по динамической и статической грузоподъемности.
Основы расчета подшипников качения
Подшипники рассчитываются по усталостному выкрашиванию и местной статической прочности. Расчет базируется на кривых усталости.
Hm N = C1
Определение максимальной нагрузки на тело качения
F = F0 + 2F1cos(2) + … + 2Fncos(n),
где = 360 / z –угловой шаг, z – число тел качения. Если все тела качения одинаковых размеров и радиальный зазор тоже одинаков можно, то F1=F2=… = F0 cos3/2 . F0 =KF/Z,
K – коэффициент, определяемый геометрией подшипника.
Формула Герца-Беляева для подшипников имеет вид:
E – модуль упругости; – относительное давление; ℓ – длина ролика;
С2 = const – коэффициент для определенного типа подшипника.
m N = C1, N = CЗ L 106, L – число миллионов оборотов подшипника за срок службы, СЗ – коэффициент, определяемый кинематикой движения подшипника. L = (C/F)P, F – эквивалентная динамическая нагрузка; С – динамическая грузоподъемность, которую подшипник может выдержать в течении 1 млн. оборотов; p – степенной показатель, равный половине показателя степени в уравнении кривой усталости, т.е. p=m/2.
Подшипник одновременно может быть нагружен осевой и радиальной нагрузками, поэтому подбор подшипников проводят по эквивалентной нагрузке: CТРЕБ = L1/p FR CR (по каталогу).
Различают динамический и статический режим нагружения подшипника.
Под статической грузоподъемностью понимают такую статическую нагрузку, при которой соответственно общая остаточная деформация тел качения и колец в наиболее нагруженной точке контакта равна 0,0001 диаметра тела качения.
Долговечность или ресурс работы подшипника выражается как
Lh = 106 L / 60n, LТР = 60Lh / 106.
Гамма -процентный ресурс – 90% должны проработать без проявления признаков старения (усталости)
Определение эквивалентной динамической нагрузки
Эквивалентная динамическая нагрузка – условная постоянная нагрузка, при которой обеспечивается та же долговечность, которую подшипник имеет при реальной нагрузке.
Эквивалентная динамическая радиальная нагрузка FR для радиальных шариковых и радиально-упорных шарико- и роликоподшипников FRЭ = (XVFr + YFa) KБ KT, где
Fr – действующая радиальная нагрузка;
Fa – расчетная осевая нагрузка. Для радиальных шарикоподшипников это действительная осевая нагрузка FX;
X, Y – коэффициенты радиальной и осевой нагрузки, V – коэффициент вращения;
КБ – коэффициент безопасности, учитывающий характер нагрузки;
КТ – температурный коэффициент
Для радиальных роликовых подшипников FRЭ = Fr VKБ KT. Эквивалентная динамическая нагрузка для упорных шарико- и роликоподшипников FaЭ = FX KБKT
Определение расчетной осевой
нагрузки
Приложенная к радиально-упорному подшипнику радиальная нагрузка вызывает появление осевой составляющей FE, величина которой зависит от угла контакта £. Fe для шарикового радиально-упорного подшипника равна Fe=eFr, а для роликового Fe = 0,83 Fr. Параметр осевой нагружения характеризует степени влияния осевой нагрузки на грузоподъемность подшипника. Опорная база подшипника
h = 0,5 (T + (d+D)/2 tg £). Для конических роликовых h = 0,5T + (d+D)/6 e
Порядок определения нагрузки
Определяют алгебраическую сумму всех осевых сил на подшипник. При этом со знаком «+» берут все силы, уменьшающие зазор в подшипнике, со знаком «– » его увеличивающие.
Если сила меньше или равна 0, то FA на этот подшипник равна осевой составляющей от его радиальной нагрузки.
Если сумма >0, то FA равна алгебраической сумме внешних осевых сил и осевой составляющей радиальной нагрузки противоположного подшипника.
Подбор подшипника при переменных нагрузочных режимах
Подшипники, работающие при переменных нагрузках и частотах вращения проверяют по приведенной динамической нагрузке, которая для радиальных шариковых и радиально-упорных шариковых, а также роликовых подшипников равна FR = (XVFr + YFa) KБKTKH при Fa / Fr > e и
FR = VFrKБKTKH при Fa / Fr e
Если осевая сила не влияет на величину расчетной нагрузки, то X=Y=1
Для радиальных роликовых подшипников FR = VFr KБKTKH
Для упорно-радиальных
FA = (XFr + YFa)KБKTKH
Для упорных подшипников
FA = FX KБKTKH
L – число млн. оборотов.
Подбор подшипников по статической грузоподъемности
В шариковых и роликовых подшипниках статическая нагрузка определяется как F0 = X0 Fr + Y0 Fa или F0 = Fr, где X0, Y0 – коэффициенты радиальной осевой статической нагрузки.
При подборе должно выполняться условие F0 C0
Для радиальных шариковых F0 = Fr
Для упорных F0 = FX
РЕМЕННЫЕ ПЕРЕДАЧИ
Достоинства:
1. простота изготовления
2. лучшая вибро-пассивность
3. малый шум
4. могут служить предохранительным звеном















