Экологические проблемы энергетики (1064796), страница 8
Текст из файла (страница 8)
Рис. 15.16. Аномалия среднегодовой (январь-декабрь) температуры приземного воздуха (0С), осредненные по территории РФ, 1886-2007гг.
Такие же изменения наблюдаются и в других регионах, что побудило мировое сообщество в 1992г. принять Рамочную Конвенцию об изменении климата, вступившую в силу в 1994г. (после ратификации большинством ее подписавших стран, в том числе и РФ).
На Третьей конференции об изменении климата в 1997 г. в Киото (древняя столица Японии) был принят заключительный протокол, который предусматривает общее сокращение выбросов «парниковых» газов в атмосферу на 5,2%. В соответствии с Киотским протоколом к 2008-2012 гг. страны Европейского союза сокращают выбросы «парниковых» газов на 8%, США на 7% (подписав соглашение они отказались его ратифицировать) и Япония на 6% от уровня 1990 г. Установлены потолки и для других промышленно развитых государств. Нам (РФ) разрешено к 2012 г. сохранить выбросы на уровне 1990 г. Россия ратифицировала конвенцию в 2004 г. и с этого времени она заработала. За превышение выбросов сверх разрешённых установлены санкции. Неиспользованные квоты выбросов можно продать.
Особенность Киотского протокола и его значение в том, что он впервые предложил экономические механизмы по энергоэффективности и энергосбережению, и стимулировал разработку альтернативных методов получения энергии.
Для расчёта эмиссии углекислого газа были обоснованы и приняты национальные коэффициенты эмиссии, для РФ они представлены в табл. 15.10.
Таблица 15.10
Коэффициенты эмиссии СО2 для РФ
Вид топлива | Коэффициенты эмиссии | |
| т СО2/т у.т. | т С/ТДж | |
| Твёрдое топливо Газообразное топливо Мазут | 2,76 1,62 2,28 | 25,68 15,07 21,22 |
Указанные в табл. 15.10 значения коэффициента эмиссии для твёрдого топлива получены с учётом структуры топливного баланса отрасли и средних характеристик наиболее значимых видов топлива, данных по неполному сгоранию для различных видов угля при сжигании в котельных установках различной мощности, в том числе и в котлах малой производительности. Эти данные охватывают весь диапазон используемого в России котельного оборудования, поэтому приведенные коэффициенты должны быть рекомендованы для использования во всех отраслях промышленности для расчёта эмиссии от установок, сжигающих органическое топливо.
Ниже представлены данные по эмиссии СО2 от ТЭС РАО «ЕЭС России» (млн. т): 1990 г. – 708,5; 1994 г. – 542,5; 1997 г. – 493,0; 1998 г. – 486,5.
Вопрос о решающем влиянии «парниковых газов» на изменение климата является спорным. На чём собственно базируется Киотский протокол. Анализ данных изменения концентрации CO2 , CH4 , N2O и температуры за последние 650 тыс. лет (рис.15.17 - 15.19) показал, что они изменялись в широких пределах периодически под влиянием природных (космических) причин поскольку менялась орбита Земли и наклон её оси вращения, а следовательно, и количество энергии поступающей на Землю от Солнца. К тому же было отмечено, что повышению концентрации «парниковых газов» часто предшествовало повышение температуры, а не наоборот. И это находит логичное объяснение в выделении газов при повышении температуры океана – главного резерва этих газов. Значительное изменение температуры происходило при извержении вулканов (рис. 15.20). Каждое извержение сопровождалось выбросом большого количества аэрозольных частиц в стратосферу, что приводило к охлаждению Землю на 1-3 года, но потом потепление возвращалось.
Поэтому, основная причина изменения климата – природная (космическая). Антропогенное влияние на климат оценивается примерно в 10%.
А какова основная польза от Киотского протокола? Прежде всего он стимулирует энергосбережение, а уменьшение выбросов «парниковых газов» сокращает выбросы и других, токсичных загрязнителей атмосферы, что безусловно идёт на пользу людям (сохраняет здоровье!).
Рис. 15.17. Изменение температуры и концентрации парниковых газов за последние 650 тыс. лет.
Последние пять тепловых межледниковых периодов показаны серыми полосами. Изменение температуры представлено по косвенным данным через концентрацию дейтерия. Изменение с – 440 до – 400 ‰ соответствует радиационному прогреву атмосферы на 3 Вт/м2, или примерно на 100С.
Рис. 15.18. Динамика изменения содержания СО2 и СН4 за последние 400 тыс. лет
Рис. 15.19. Динамика изменения уровня океана и температуры за последние 400 тыс. лет
Рис. 15.20. Рост температуры приземного слоя атмосферы Земли в 1900 – 2005гг.
В декабре 2009 г. в Копенгагене состоялась 15-я конференция стран-участниц Рамочной конвенции ООН об изменении климата, на которой планировалось выработать новое международное соглашение о сокращении выбросов парниковых газов на пост Киотский период (2012-2020 гг.).
Конференция закончилась провалом в связи с непримиримими позициями развивающихся стран (Китай, Индия, ЮАР и Бразилия) и развитыми (США, Евросоюз, Канада и др.). Развитые страны хотели навязать развивающимся непосильное для них бремя борьбы с выбросами парниковых газов, что значительно бы замедлило их экономический рост, на что они резонно ответили, поскольку современная ситуация сложилась по вине развитых стран им и брать основное бремя расходов на себя.
По мнению академика Н.П. Лавёрова: «Лицами, которые выступают с негативными прогнозами (катострофических последствий глобального потепления от выбросов парниковых газов) движут коммерческие и политические интересы».
На конец 2009г. мировые выбросы СО2 распределялись следующим образом, в %: Китай - 24,США - 21, ЕС – 12, Индия и Россия – 6.
В ходе дискуссий на конференции страны высказали свои намерения снизить выбросы, по сравнению с 1990г., в %: Евросоюз – на 20 (к этому времени Евросоюз планирует снизить потребление углеводородов на 20% за счёт энергосбережения и 20% - за счёт перехода на альтернативные источники энергии, то есть выбросы СО2 снижаются автоматически ), Япония - на 17, Австралия – на 5. США брали обязательство снизить выбросы на 17%, но по отношению к 2005г. (по отношению 1990г. это всего 2-3%). А вот к 2050г. они обещают снизить выбросы парниковых газов более чем на 80% (!) ( к этому времени администрация в США сменится несколько раз). Китай так же предложил снизить выбросы на 40-45%, но тоже по сравнению с 2005г.
Россия предложила снизить выбросы СО2 на 25%, но в связи с развалом экономики они и так уменьшились по сравнению с 1990г. на 38% (то есть, мы предложили не уменьшение выбросов, а их увеличение на 13%).
Провалу Копенгагенского саммита способствовало и опубликование в СМИ секретной переписки климатологов США и Великобритании, из которой становится ясно, что температура на Земле не возрастает, а наоборот понижается и эти данные сознательно искажались в пользу концепции всеобщего потепления по вине парниковых газов.
Ну и серьёзным фактором является мнение наших и многих зарубежных климатологов, что доля влияния человека на климатические изменения остаётся трудноопределяемой и неясной. Значительная часть климатических изменений связана с глобальными долгосрочными трендами, и, чтобы мы ни сделали, скорее всего какие-то изменения будут продолжаться в силу естественных причин. Между прочим, концентрация СО2 в атмосфере Марса превышает 95%, однако Красная планета намного холоднее Земли.
15.7. Проблема теплового загрязнения
Локальное тепловое загрязнение окружающей среды. Основное количество тепловой энергии на ТЭС и ТЭЦ поступает в окружающую среду на стадии конденсации пара, около 50-55% от тепловой энергии, выделяемой при сгорании топлива. На АЭС эта величина ещё больше и составляет для ВВЭР (водо-водяных реакторов) 65-68% от общей тепловой энергии, вырабатываемой в реакторе. В настоящее время наиболее распространённым хладоагентом при конденсации пара на ТЭС и АЭС является вода системы технического водоснабжения (СТВС). При прямоточной СТВС теплота конденсации передаётся проточной воде рек или озёр. При организации замкнутых СТВС тепло передаётся циркуляционной воде, охлаждаемой в замкнутых прудах-охладителях или градирнях.
При организации прямоточных СТВС во избежание необратимых экологических изменений в водоёмах и в соответствии с санитарными нормами, повышение температуры водоёмов не должно превышать 5оС в зимнее время и 3оС летом. Эти нормы могут быть выдержаны, если удельная нагрузка на водоём не будет превышать 12-17 кДж/м3 сбрасываемой тепловой энергии. Это накладывает серьёзные ограничения на возможности использования прямоточных СТВС, которые являются, с экономической точки зрения, самыми дешёвыми. Анализ водного баланса Европейской части РФ показывает, что в данном районе возможности применения прямоточной СТВС практически исчерпаны.
При организации оборотной СТВС с охлаждением воды в градирнях практически всё тепло, забираемое водой при конденсации пара, передаётся атмосферному воздуху. Однако в связи со значительным испарением воды в градирнях, эти системы нуждаются в постоянной подпитке свежей водой. На АЭС, имеющих оборотные СТВС с градирнями, на каждые 1000 МВт мощности станции требуется 0,8-1,2 м3 воды каждую секунду. Помимо этого, недостаточно изучено влияние градирен на микроклимат и атмосферные явления. Организация оборотных СТВС возможна и при естественном охлаждении воды в прудах-охладителях. В последнее время для этих целей на новых электростанциях широко используются акватории существующих водохранилищ комплексного назначения. При этом, в целях экономии земельных и водных ресурсов и предотвращения влияния сбросного тепла на гидробиологический режим водохранилища, акватория, используемая для охлаждения, отделяется от остального водохранилища ограждающей дамбой. В настоящее время около 80% действующих ТЭС и АЭС имеют оборотные СТВС, причём около 56% всех электростанций оборудованы системами с водохранилищами-охладителями, 22% оборудованы градирнями и только 22% электростанций имеют прямоточные СТВС.
Проводятся работы по совершенствованию и применению воздушно-конденсационных установок охлаждения (ВКУ). Подобные установки используются, например, на Билибинской АЭС. При низких температурах окружающего воздуха ВКУ работает очень надёжно, однако в летнее время при температуре воздуха выше 25-27оС работа энергоблока с номинальной мощностью оказывается невозможной, именно это и высокая стоимость ВКУ сдерживают их широкое распространение.
Глобальное тепловое загрязнение, вызывающее нарушение устойчивости биосферы Земли. Особую роль в нарушении устойчивости биосферы играет непрерывный рост производства и потребления энергии, а любое ее использование в конечном итоге приводит к рассеиванию и появлению на поверхности Земли дополнительных источников тепла.
Загрязнение атмосферы, водной среды и поверхности (суши) различными токсичными веществами безусловно оказывает пагубное влияние на биосферу, но эти процессы более управляемы. Уже существующие технические средства позволяют решать большинство этих проблем (вопрос в цене и времени). Потерю же тепла, рассеивание можно уменьшить, но избежать невозможно, этому препятствуют законы природы.
Многолетние метеорологические наблюдения достоверно показывают, что на территориях, испытывающих большую антропогенную нагрузку, и в прилегающих к ним районах климатические и погодные условия за последние 100 лет изменились значительно. К тому же наблюдается рост опасных гидрометеорологических явлений (рис.15.21).
Рис. 15.21. Рост суммарного числа случаев опасных гидрометеорологических явлений за 1991 – 2005 гг.
Если рассмотрение глобального потепления только в качестве последствия антропогенной деятельности вызывает ряд возражений (и справедливых, например, по геоклиматическим причинам), то локальные изменения климата и погоды безусловно в большинстве случаев являются результатом техногенной нагрузки.
Суммарная мощность всех антропогенных источников энергии в настоящее время около 1010 кВт. Эта величина составляет ничтожную часть энергии, излучаемой от Солнца, и энергии движения и вращения Земли, но она уже сопоставима (0,1%) с энергией процессов, осуществляющихся на планете, в атмосфере и океане и обуславливающих разнообразие климата и погоды на земном шаре. Мощность потока солнечной энергии достигающей земной поверхности составляет около 1013 кВт.
Все крупномасштабные явления на поверхности Земли (мощные циклоны, извержения вулканов, процесс глобального фотосинтеза), как правило, имеют суммарную энергию, не превышающую 1% от энергии солнечного излучения, попадающего на поверхность планеты. Выход энергии за это значение может привести к существенным аномалиям - резким климатическим отклонениям, переменам в характере растительности (и биоты в целом), крупным лесным и степным пожарам и т.д.
Прогноз развития мирового энергопотребления показывает, что уже к 2040 г. суммарная мощность антропогенных источников достигнет 1% от энергии Солнца на поверхности Земли, а это уже чревато серьёзным нарушением глобального экологического равновесия.















