Главная » Просмотр файлов » Экологические проблемы энергетики

Экологические проблемы энергетики (1064796), страница 4

Файл №1064796 Экологические проблемы энергетики (Презентация к лекционному курсу) 4 страницаЭкологические проблемы энергетики (1064796) страница 42017-12-28СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

Ещё одним преимуществом использования водорода в качестве энергоносителя является возможность более экономичного, по сравнению с электроэнергией, его транспортирования на большие расстояния, хотя здесь есть ещё немало нерешённых проблем.

Перспективность использования водорода в качестве энергоносителя определяется и рядом других его свойств, среди которых необходимо назвать следующие:

  • высокое удельное энергосодержание в расчёте на единицу массы (в три раза выше, чем у природного газа);

  • возможность использования для получения энергии имеющихся в промышленности газовых горелок и двигателей внутреннего сгорания на транспорте без серьёзных их модификаций;

  • в химической промышленности и металлургии водород может быть использован в качестве восстановителя;

  • производство его возможно несколькими способами (химическим, электрохимическим, биологическим);

  • возможна организация экономически оправданного децентрализованного производства и использования водорода.

Последнее свойство является чрезвычайно важным при решении энергетических проблем в развивающихся странах и в отдалённой сельской местности. При этом перспективным представляется организация процессов биофотолиза воды, т.е. использования механизма фотосинтеза для её разложения под действием солнечного света с получением свободных кислорода и водорода.

Одна из таких систем разработана в нашей стране, в её основе лежит культура микроскопической водоросли и термостойкой анаэробной цианобактерии. Клетки водорослей на свету в ходе фотосинтеза производят органические соединения углеводородного характера и свободный кислород. Образующиеся углеводы разлагаются ферментными системами бактерий на уксусную кислоту, этанол, углекислый газ и водород.

Таким образом, при воздействии солнечного света на эту систему непрерывно выделяется кислород и водород, т.е. происходит фоторазложение воды. Необходимо отметить, что из всех известных способов прямого преобразования солнечной энергии в топливо такой процесс наиболее близок к практическому использованию.

Применение водорода в качестве энергоносителя перспективно и с точки зрения сохранения окружающей среды: при окислении водорода в присутствии кислорода образуются только пары воды. Вода же (в частности вода мирового океана), является природным ресурсом, из которого термическим, термохимическим, электрохимическим или другими методами может быть получен водород. Особого внимания заслуживает применение высокотемпературных ядерных реакторов для централизованного производства водорода в больших масштабах.

15.3. Запасы энергетических ресурсов и их роль в современной энергетике

Весьма важное значение для судеб человечества имеет анализ имеющихся энергетических ресурсов, перспектив развития энергетики и экологических последствий её развития. Толчком к этому послужил энергетический кризис 1973-1974 гг. и обсуждение экологических последствий антропогенного влияния на биосферу в целом, которые стимулировали проведение всесторонних исследований и долгосрочных прогнозов развития энергетики. Один из таких прогнозов приведён в фундаментальной работе академика В.А. Легасова с сотрудниками института Атомной энергии им. И.В. Курчатова [38].

В долгосрочных прогнозах мирового потребления энергии принимались во внимание два варианта. В одном из них стабилизация потребностей в энергии на душу населения происходит на уровне 20 кВт (тепл.) год/чел., в другом – 10 кВт (тепл.) год/чел. Стабилизация энергопотребления, как и численности населения на Земле, взаимосвязаны и неизбежны.

Цифра 20 кВт год/чел. представляет собой сумму двух слагаемых (рис. 15.10). Первое слагаемое равно 10 кВт год/чел. – это наивысший уровень потребления энергии на душу населения, достигнутый в мировой энергетике в развитых странах. Ему соответствует уровень развития энергетики США. Второе слагаемое введено, чтобы учесть поправки на будущее. Поскольку ресурсы Земли ограничены, для сохранения высокого уровня жизни потребуется дополнительная энергия, чтобы повторно использовать материалы, опреснять воду, производить водород, пищевые продукты и т.д. Суммарное численное значение этой поправки оценено в 10 кВт год/чел..

По-видимому, величина 20 кВт (тепл.) год/чел при расчёте перспективной потребности в энергии является наивысшей оценкой для уровня стабилизации удельного потребления энергии. Здесь надо иметь в виду следующее обстоятельство. Сегодня коэффициент полезного использования энергоресурсов меньше технически достижимого, а КПД энергетических установок ниже экономически оптимального. Поэтому, повысив КПД преобразования первичной энергии во вторичную (механическую, электрическую) и увеличив КПД потребления вторичной энергии (а также за счёт экономии энергии), можно обеспечить растущую потребность, оставляя уровень производства первичной энергии неизменным. С большой степенью надёжности можно утверждать, что уровень реальной стабилизации энергопотребления будет находиться в рассматриваемом диапазоне от 10 до 20 кВт (тепл.) год/чел.


Рис.15.10. Прогнозируемая величина энергопотребления на душу населения, при которой наступает стабилизация потребностей в энергии (20 кВт (тепл.)*год/чел).

Энергетика на органическом топливе. Основным источником энер­гии на современном этапе развития является органическое топливо. Структура мирового энергетического баланса представлена на рис.15.11, а сравнение ежегодных потребностей с потенциальными возможностями, на рис.15.12.

Согласно данным специальной комиссии экспертов Мировой энер­гетической конференции (МИРЭК - X) суммарные запасы органического топлива оцениваются в диапазоне от 22,7Q (разведанные месторождения) до 295Q (геологические запасы), где Q, специально введённая единица, равная 0,25 1018ккал = 3,35 1010кВт (тепл.) год.

Расчёты показывают, что только для угля (на долю которого приходится около 80% мировых запасов органического топлива) сроки исчерпания запасов превышают 300 лет, а запасы нефти и газа (при сохранении темпов их добычи) будут исчерпаны уже в этом столетии.

Сравнивая величину этих запасов с мировой потребностью в энер­гии, авторы прогноза делают логичный вывод, что истощение разведан­ных запасов органического топлива произойдет задолго до стабилизации потребления энергии. Если же ориентироваться на геологические запасы, ресурсы органического топлива будут исчерпаны примерно к моменту до­стижения стабилизации потребления энергии, около 2100 г.

Отсюда, со всей очевидностью, следует очень важный вывод: потен­циальные возможности энергетики на органическом топливе (с учётом предполагаемых потребностей в энергии на долгосрочную перспективу (3,6-7,3 Q/год) невелики. Из-за ограниченности ресурсов энергетику на органическом топливе нельзя отнести к крупномасштабному источнику, способному производить на протяжении столетий энергию в несколько Q в год. Её ресурсы позволяют покрыть потребности на ближней фазе развития и обеспечить на средней фазе переход к альтернативным источникам, спо­собным удовлетворить потребности в энергии на отдаленной фазе.


Рис. 15.11. Структура мирового энергетического баланса

(в начале ХХI века, 13 млрд. т условного топлива).


а б

Рис.15.12. Сравнение ежегодных потребностей в энергии по двум сценариям (0,76 и 0,82) (а) с потенциальными возможностями возобновляемых источников энергии (б).

Ограниченность запасов органического топлива, особенно нефти и природного газа – главная причина наблю­дающейся сегодня переориентации мирового топливно-энергетического баланса.

Уголь в отличие от нефти и природного газа еще длительное время может сохранить свое положение в энергетическом балансе, и в 2020 г его доля, очевидно, останется на сегодняшнем уровне, рав­ном 30%. Такое широкое использование угля объясняется существовани­ем относительно крупных его запасов. Однако и здесь имеются факторы, ограничивающие возможные перспективы использо­вания угля. Это – неравномерное географическое распределение запасов, большие капиталовложения и затраты времени на освоение новых место­рождений, а также риски при добыче и проблема защиты окружающей среды.

Возобновляемые источники энергии. К ним относятся: реки (гидроэнергетика), морские приливы и отливы, тепло Земли (геотермальная энергия) и Солнца (непосредственно энергия солнечной радиа­ции или энергия ветра, морских волн, тепла морей и океанов) (рис. 15.12).

В настоящее время из возобновляемых источников только гидроэнергоресурсы принимаются во внимание при разработке топливно-энергетического баланса. Однако на их долю приходится незначительная часть (примерно 1,4%) общего производства энергии в мире. Мировой технический потенциал гидроэнергоресурсов соответствует производ­ству энергии, равному 0,065Q в год, что составляет не более несколь­ких процентов в топливно-энергетическом балансе. Поэтому даже полное использование гидроэнергетических ресур­сов не позволяет покрыть сколько-нибудь значительную часть дефицита в энергии, связанного с истощением запасов нефти и природного газа. Необходимо добавить, что гидроэнергетика существенно влияет на экологическую обстановку в районе расположения ГЭС. Отсюда ясно, что гидроэнергетика в ми­ровом топливно-энергетическом балансе может играть только вспомогательную роль.

Технический потенциал таких возобновляемых источников энергии, как энергия ветра, морских приливов и отливов, морских волн (фак­тически это, в основном, аккумулированная солнечная энергия) представляется крайне незначительным в свете глобальных потребностей в энергии на перспективу. Зато большими потенциальными возможностями обладает энергетика, использующая разность температур поверхностных и глубинных слоев морей и океанов, тепло морей и океанов, и геотермальная энергетика. Потенциал геотермальной энергетики соответствует ежегод­ному производству 1Q энергии, а использование тепла морей и океанов – примерно 2Q.

Суммарный технический потенциал таких возобновляемых источников энергии, как гидроэнергия, энергия морских приливов и отливов, волн, ветра, тепловая энергия океана и недр Земли соответст­вует источнику энергии мощностью 3Q в год. Однако экологические, экономические и технические причины ограничивают этот показатель, снижая его до величины 0,1Q в год. Это означает, что перечислен­ные выше возобновляемые источники энергии не только не могут играть в будущем роль крупномасштабных источников энергии (мощность не­сколько Q в год), но даже не в состоянии покрыть намечающийся на начало столетия дефицит в топливно-энергетическом балан­се мира.

Солнечная энергетика. В последнее время интерес к проблеме использования солнечной энергии резко возрос. Потенциальные возможности энергетики, использующей непосред­ственно солнечную радиацию, чрезвычайно велики. Общее количество солнечной энергии, проходящей через атмосферу и достигающей поверх­ности Земли, оценивается в 2000Q в год. Использование лишь 0,01% этой энергии могло бы обеспечить все сегодняшние потребности мировой энергетики, а 0,5% – полностью покрыть потребности и на перспективу. К сожалению, вряд ли когда-нибудь эти огромные потенциальные ресурсы удастся реализовать в больших масштабах. Одним из наиболее серьёзных препятствий является здесь низкая интенсивность солнечной радиации. Даже при наилучших атмосферных условиях (в южных широтах и чистом небе) интенсивность солнечной радиации в среднем в течение года составляет не более 250 Вт/м2. Поэтому, чтобы коллекторы солнечной радиации «собрали» энергии 1Q в год, нужно разместить их на территории площадью не менее 130 тыс. км2 (рис. 15.13).

Необходимость использовать коллекторы огромных размеров, кроме того, влечёт за собой значительный расход материальных ресурсов. Простейший солнечный коллектор представляет собой зачернённый металлический (как правило, алюминиевый) лист, внутри которого распо­лагаются трубы с циркулирующей в них жидкостью.

Характеристики

Тип файла
Документ
Размер
4,51 Mb
Тип материала
Высшее учебное заведение

Список файлов лекций

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7041
Авторов
на СтудИзбе
259
Средний доход
с одного платного файла
Обучение Подробнее