Главная » Просмотр файлов » Экологические проблемы энергетики

Экологические проблемы энергетики (1064796), страница 2

Файл №1064796 Экологические проблемы энергетики (Презентация к лекционному курсу) 2 страницаЭкологические проблемы энергетики (1064796) страница 22017-12-28СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Еще одно направление повышения КПД ТЭС и ТЭЦ связано с совершенствованием технологии сжигания топлива. В первую очередь это относится к установкам по сжиганию угля, которых в настоящее время большинство, как в нашей стране, так и в мире в целом. Одним из перспективных методов получения тепловой энергии из угля считается сжигание его в кипящем слое. В этом случае частицы угля поддерживаются в камере сгорания во взвешенном состоянии (в так называемом кипящем слое) потоком воздуха. В таких аппаратах удаётся сформировать однородный профиль температуры во всей топке котла.

Расчёты и эксперименты показывают, что при сжигании угля в установках с кипящим слоем, КПД преобразования химической энер­гии в тепловую может быть повышен до 99%, а общий КПД ТЭС, ис­пользующих эту технологию, может достигнуть 45%, что примерно на 10% больше, чем у обычных ТЭС.

Кроме повышения КПД, использование котлоагрегатов с топками кипящего слоя позволяет значительно снизить загрязнение атмосферы при работе ТЭС. Помимо снижения выбросов оксидов азота за счёт лик­видации локальных перегревов в топочной камере добавки в кипящий слой известняка или других материалов обеспечивают связывание и удаление SO2 уже в процессе сжигания.

Значительное повышение КПД преобразования химической энергии в электрическую может быть получено при использовании на ТЭС магнитно-гидродинамических генераторов (МГД-генераторов). Электрический ток в МГД-генераторе вырабатывается в процессе прохождения рабочей жидкости или газа через магнитное поле, в результате элект­ромагнитного взаимодействия между ними. В этом случае осуществля­ется прямое преобразование тепловой энергии в электрическую. Использование МГД-генератора последовательно с паротурбинными установками позволяет довести общий КПД преобразования энергии до 60%.

Энергия воды и ветра. Использование кинетической энергии воды на гидроэлектростанциях (ГЭС) в настоящее время получило наибольшее развитие из всех возобновляемых источников энергии. Уже в 1970 г на гидроэлектростан­циях было выработано 1175 млрд. кВт ч электроэнергии, что составляло 23,7% общей выработки электроэнергии в мире.

Как известно, около 2% от энергии солнечного излучения, достигающей поверхности Земли, пре­вращается в энергию ветра, часть из которой может быть использована в качестве ещё одного возобновляемого источника энергии.

Энергия воздушного потока пропорциональна кубу скорости его движения, однако лишь часть этой энергии может быть преобразована, например, в электрическую энергию. Теоретически возможный коэффициент использования ветровой энергии равен 59,3%. На практике из-за значительной неравномерности ветра и дополнительных потерь, связанных с несовершенством конструкций ветроагрегатов, их среднегодовой КПД не превышает 30%.

Существуют два наиболее развитых направления использования энергии ветра:

  • сооружение относительно небольших установок с мощностью 5-100 кВт, предназначенных, главным образом, для нужд насосного водоснабжения, и электрификации сельского хозяйства;

  • разработка ветроагрегатов для производства электроэнергии мощностью от 100 кВт до 5 мВт.

К возобновляемым источникам энергии относятся также энергия морских приливов и волн. Морские приливы и отливы вызываются, как известно, силами притяжения Луны и в некоторой степени Солнца. При вращении Земли вокруг своей оси дважды за сутки происходит прилив и отлив. Величина изменения уровня моря в периоды приливов и отли­вов зависят от географической широты района, глубины моря и степени изрезанности береговой линии. Эти изменения в некоторых местах, например в Канаде, достигают 18 м. В РФ в Пенжской губе Охотского моря перепад высот во время прилива и отлива составляет 13 м.

Еще один возобновляемый источник энергии cвязан с энергией морских волн. Среднегодовая мощность морских волн довольно велика, она измеряется в большинстве случаев десятками киловатт на 1 м направления, перпендикулярного движению волны.

Геотермальная энергия. Глубинные слои земли, как известно, имеют более высокую температуру, чем поверхность планеты. В ядре Земли продолжается распад радиоактивных элементов, и его температура достигает примерно 5000°С.

Средняя температура верхнего слоя земли равна 15оС. Поэтому тепловой поток постоянно направлен от центра земли к её поверхности. Верхняя часть земной коры имеет температурный градиент, равный 20-30°С в расчёте на 1 км глубины. Общая мощность теплового потока земного ядра примерно в 4000 раз меньше мощности солнечной радиации. В РФ, например, геотермальная энергия используется в сельскохозяйственном производстве для обогрева теплиц. Более 30 лет вырабатывает электроэнергию Паужетская геотермальная электростанция на Камчатке.

Солнечная энергия. Следует различать три существующих пути в технике использования солнечной энергии:

  • преобразование солнечной энергии в электрическую;

  • получение тепловой энергии;

  • производство биомассы, концентрирование солнечной энергии автотрофными организмами и последующее использование их химической энергии.

Работы по трансформации солнечной энергии в электрическую ведутся по двум направлениям:

  • создание солнечных электростанций (СЭС), в которых теплоэлектропаровой котел, характерный для ТЭС, заменён на солнечный паровой котёл;

  • разработка полупроводниковых фотоэлектропреобразова-телей – фотоэлементов, способных превращать солнечную энергию непосредственно в электрическую.

Несмотря на серьёзные трудности, связанные с необходимостью предварительного концентрирования солнечной энергии и создания системы аккумулирования энергии, во всём мире интенсивно разрабатываются проекты СЭС различной мощности.

Другим способом использования энергии солнечного излучения для производства электроэнергии является фотоэлектрическое преобразование. Солнечные элементы, представляющие собой тонкие пластины из кристаллического кремния или тонкие плёнки из сульфида кадмия, способны вырабатывать электрический ток непосредственно при падении на них солнечных лучей.

Перспективный метод преобразования солнечной энергии состоит в использование листа стекла или пластмассы, покрытого люминесцирующими красителями, которые поглощают солнечный свет в узких спектральных диапазонах, а затем испускают фотоны разных энергий во многих направлениях (рис. 15.5). Свет, отражаемый от границ, оказывается «захваченным» внутри листа, поскольку красители уже не могут поглощать его, и он в конце концов попадает к краю листа, где расположен солнечный элемент. Для такой системы не нужно устройство слежения за Солнцем, поскольку красители поглощают свет, падающий под любым углом. Теоретическое значение КПД здесь превышает 50%.


Рис 15.5. Накопитель солнечного излучения,

в котором используется люминесцентные красители, поглощающие узкие спектральные полосы солнечного света, а затем испускающие фотоны с различными длинами волн.

Фотоэлектрическое преобразование имеет ряд серьёзных преимуществ по сравнению с получением электрической энергии в парогенераторах: солнечные элементы не имеют движущихся частей, продолжительность их работы может (в принципе) достигать 100 и более лет; уход за ними не требует от обслуживающего персонала высокой квалификации; они эффективно используют как прямое, так и рассеянное излучение; систему можно легко составлять из различных модулей, и она пригодна для создания установок практически любой мощности.

В последнее время наблюдается расширение исследований и разработок дешёвых плоскопанельных, а также тонкоплёночных солнечных батарей, систем концентраторов и многих новых идей. Следует ожидать, что в ближайшем будущем стоимость отдельного солнечного элемента и комплектуемых на его основе больших солнечных батарей снизится настолько, что окажется экономически выгодным использование солнечной энергии в больших масштабах. Кроме того, использование солнечной энергии экологически наиболее оправдано: нет вредных выбросов и нет нарушения баланса энергии, так как сколько энергии попадает на её приёмник (например, панель солнечной батареи), ровно столько энергии будет выделено, в конце концов, в пространство Земли, т.е. не имеет значения, поглощается ли энергия поверхностью Земли напрямую или после её использования.

В настоящее время мощность фотоэлектрических преобразователей ограничивается мощностью в несколько киловатт. Однако, область их применения быстро расширяется. В отдалённых районах промышленно развитых стран, а также в сельских районах развивающихся стран они широко применяются в качестве источника электропитания. Типичными примерами являются работающие на солнечной энергии космические аппараты и станции, сиг­нальные световые устройства вокруг аэропорта в Медине (Саудовская Аравия), маяк в Индонезии, а также солнечные панели для зарядки батарей, солнечные водяные насосы, устройства дальней связи, бытовые электроприборы, (холодиль­ники, освещение, средства малой вычислительной техники и т.д.).

Первая солнечная газотурбинная установка (СГТУ) для Международной космической станции разработана РКК «Энергия» совместно с Исследовательским центром им. М.В. Келдыша. КПД установки может достигать 30% и выше (рис. 15.6). Основные характеристики солнечной газотурбинной установки приведены в табл. 15.1.


Рис. 15.6. Принципиальная схема солнечной газотурбинной установки

Таблица 15.1

Основные характеристики солнечной газотурбинной установки

Характеристики

Значение

Среднесуточная мощность, кВт

10

Выходное напряжение, В

120

Диаметр зеркала, м

9,5

Теплоаккумулирующее вещество

80% LiF + 20% CaF2

Рабочее тело газотурбинного преобразователя

32% He + 68% Xe

Температура газа, оС

на входе в солнечный приёмник-аккумулятор и

на выходе из солнечного приёмника-аккумулятора

538

750

КПД солнечного приёмника-аккумулятора, %

> 85

КПД преобразования тепловой энергии в электрическую, %

30

Масса, т

5,5

Энергетические установки, использующие солнечную энергию для получения тепла, делят на активные и пассивные.

В пассивных системах солнечного энергоснабжения теплота передаётся с помощью радиации, теплопроводности или естественной конвекции. Их отличает простота и экономичность. С развитием систем аккумулирования и их комбинированного применения с источниками тепла на природном топливе использование пассивных солнечных преобразователей энергии приобрело и определённую надёжность как средство отопления помещений.

К активным системам преобразования солнечной энергии в тепловую относят системы с принудительной циркуляцией теплоносителя, контак­тирующего с поверхностью, нагреваемой при попадании на неё солнечного излучения. Аппараты, в которых происходят процессы активного теп­лообмена, называют коллекторами. В настоящее время коллекторы под­разделяют на две большие категории: солнечные коллекторы без кон­центраторов (плоские коллекторы) и солнечные коллекторы с концен­траторами. При использовании коллекторов с концен­траторами солнечной энергии может быть достигнута значительно более высокая температура теплоносителя. Так, напри­мер, во Франции, (в Пиренеях), построена солнечная печь для получения особо чистых металлов. Использование концентраторов в этом случае позволило получить температуру свыше 3000°С.

Коллекторы без концентраторов дешевле и широко используются в качестве отопительных установок, опреснителей воды, бытовых водонагревателей, сушки сельскохозяйственных продуктов, устройств для приготовления пищи.

Ещё одно из важнейших направлений использования солнечной энергии связано с живыми (в первую очередь растительными) организмами. Автотрофные организмы ежегодно ассимилируют в результа­те процесса фотосинтеза около 200 млрд. т углерода, превращая его в органические соединения. Общее энергосодержание образующейся при этом биомассы оценивается в 3 1021 Дж. Эта величина примерно в 10 раз превышает ежегодное мировое потребление энергии и в 200 раз больше энергосодержания ежегодно потребляемой человечеством пищи. Эффективность фотосинтеза с точки зрения трансформации солнечной энергии крайне низкая, в среднем 0,1% от теоретической (равной 15%). Однако имеются растения, которые используют 1 и даже 3% солнечной энергии (некоторые растения на севере). Так что имеются громадные возможности для селекционеров (Это ведь резерв пищи!). Общее количество энергии солнечного излучения, получае­мое поверхностью Земли за год, более чем в 20000 раз превышает современный уровень мирового производства энергии.

Доля растительной биомассы в мировом потреблении энергии пока сравнительно невелика и составляет примерно 8% от общего количества топлива, расходуемого в мире. Однако для развивающихся стран биомасса растений, т.е. дрова и сжигаемые отходы сельского и лесного хозяйства, чрезвычайно важны и в настоящее время являются основными источниками получения энергии. В развивающихся странах на долю биологических источников энергии (в основном дрова) приходится 68% получаемой энергии, в странах Дальневосточного региона (за исключением Японии) – 50%. В странах Европейского экономического сообщества растительная биомасса служит источником 1% получаемой энергии, что эквивалент­но, однако, расходу примерно 100 млн. т нефти в год. К концу ХХ века в этих странах было намечено увеличить долю энергии, получаемой из биомассы, до 5%. В США доля энергии, получаемой из топлива расти­тельного происхождения, составляет 3% от общего баланса производства энергии и неуклонно увеличивается.

Характеристики

Тип файла
Документ
Размер
4,51 Mb
Тип материала
Высшее учебное заведение

Список файлов лекций

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7041
Авторов
на СтудИзбе
259
Средний доход
с одного платного файла
Обучение Подробнее