GOST 24026-80 (1062953), страница 3

Файл №1062953 GOST 24026-80 (Полезные ГОСТы) 3 страницаGOST 24026-80 (1062953) страница 32017-12-28СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Если обозначить число символов через S, то латинский квадрат — это такая структура, где S символов расположены в S2 ячейках. Символы располагаются в S строках и S столбцах так, что каждый символ встречается один и только один раз в каждой строке и в каждом столбце.

К термину «Латинский куб первого порядка»(п. 58)

Если обозначить число символов через S, то латинский куб это такая структура, где S символов расположены в S3 ячейках. Они располагаются в S квадратах из S строк и S столбцов так, что каждый символ встречается одинаковое число раз в квадрате.

К термину «Критерий оптимальности плана» (п. 59)

К числу важнейших критериев относят:

а) критерий D-оптимальности — это мера эффективности плана, сформулированная на языке свойств информационной матрицы плана.

Пусть М=ХT×X - матрица моментов плана, а

МN = ХT×Xинформационная матрица плана.

Здесь N — общее число опытов в плане, Хматрица базисных функций для заданной модели и фиксированного плана, ХT — транспонированная матрица X. Удовлетворение требования D-оптимальностп означает минимизацию определителя матрицы ( матрица, обратная информационной матрице МN) на множестве элементов хij матрицы плана, т. е.

min det

.

Здесь хij — элемент i-й строки и j-го столбца матрицы плана, i=l, 2,..., N, j=1,..., k (k — число факторов). Wх — область экспериментирования. det — обозначение операции вычисления определителя матрицы.

D - оптимальный план минимизирует на множестве допустимых планов обобщенную дисперсию оценок коэффициентов регрессии;

б) критерий А-оптимальности — это мера эффективности плана, сформулированная на языке свойств информационной матрицы плана.

Пусть М=ХT×X — матрица моментов плана, а

МN = ХT×X — информационная матрица плана.

Здесь N - общее число опытов в плане, Х - матрица базисных функций для заданной модели и фиксированного плана, ХT - транспонированная матрица X. Удовлетворение требования A-оптимальности означает минимизацию следа матрицы на множестве элементов хij матрицы плана, т. е.

min Sp,

.

где Sp — обозначение операции вычисления следа матрицы;

хij — элемент i-й строки и j-го столбца матрицы плана, (i=l, 2,..., N, j=1, 2,..., k);

Wх — область экспериментирования.

А-оптимальный план минимизирует на множестве допустимых планов среднюю дисперсию оценок коэффициентов регрессии.

В настоящее время используется свыше 20 различных критериев оптимальности планов.

К термину «Ротатабельность плана» (п. 61)

Планирование является ротатабельным, если матрица моментов плана инвариантна к ортогональному вращению координат.

К термину «Насыщенность плана» (п. 63)

Различают ненасыщенные планы, когда разность равна нулю, и перенасыщенные (сверхнасыщенные) планы, когда разность отрицательна.

К термину «Метод случайного баланса» (п. 64)

Случайный баланс использует нерегулярную дробную реплику от полного факторного плана, задающую сверхнасыщенный план для модели, включающий линейные эффекты и парные воздействия. Обработка данных основывается на методах статистического оценивания и некоторых эвристических соображениях.

К термину «Эволюционное планирование» (п. 65)

Существуют различные модификации ЭВОП: обычное ЭВОП (ЭВОП Бокса), последовательный симплексный метод, квадратичное вращаемое ЭВОП и т. п.

К термину «Дисперсионный анализ» (п. 69)

К количественным относятся такие факторы, как температура, давление, вес и т. п. примеры качественных факторов — тип прибора, вид материала, сорт зерна и т. п. Если количественный фактор принимает в эксперименте небольшое число различных значений, то его можно рассматривать как качественный. В такой ситуации применима техника дисперсионного анализа.

Характеристики

Тип файла
Документ
Размер
206 Kb
Тип материала
Высшее учебное заведение

Список файлов стандарта

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6430
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее