Курс МСЗИ2 (1027399), страница 2

Файл №1027399 Курс МСЗИ2 (Лекции по информационной безопасности) 2 страницаКурс МСЗИ2 (1027399) страница 22017-12-21СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Схемы с выбранными по данному закону обратными связями называются генераторами последовательностей наибольшей длины (ПНД), и именно они используются в скремблирующей аппаратуре. Из множества генераторов ПНД заданной разрядности во времена, когда они реализовывались на электрической или минимальной электронной базе выбирались те, у которых число разрядов, участвующих в создании очередного бита, было минимальным. Обычно генератора ПНД удавалось достичь за 3 или 4 связи. Сама же разрядность скремблеров превышала 30 бит, что давало возможность передавать до 240 бит = 100 Мбайт информации без опасения начала повторения кодирующей последовательности.

ПНД неразрывно связаны с математической теорией неприводимых полиномов. Оказывается, достаточно чтобы полином степени N не был представим по модулю 2 в виде произведения никаких других полиномов, для того, чтобы скремблер, построенный на его основе, создавал ПНД. Например, единственным неприводимым полиномом степени 3 является x3+x+1, в двоичном виде он записывается как 10112 (единицы соответствуют присутствующим разрядам). Скремблеры на основе неприводимых полиномов образуются отбрасыванием самого старшего разряда (он всегда присутствует, а следовательно, несет информацию только о степени полинома), так на основе указанного полинома, мы можем создать скремблер 0112 с периодом зацикливания 7(=23-1). Естественно, что на практике применяются полиномы значительно более высоких порядков. А таблицы неприводимых полиномов любых порядков можно всегда найти в специализированных математических справочниках.

Существенным недостатком скремблирующих алгоритмов является их нестойкость к фальсификации. Подробнее данная проблема рассмотрена на следующей лекции, применительно к созданию целых криптосистем.

Назад | Содержание | Вперед

Блочные шифры

2.2.2.1. Общие сведения о блочных шифрах ( 19 кб )
На сегодняшний день разработано достаточно много стойких блочных шифров. Практически все алгоритмы используют для преобразований определенный набор биективных (обратимых) математических преобразований

2.2.2.2. Сеть Фейштеля
Сетью Фейштеля называется метод обратимых преобразований текста, при котором значение, вычисленное от одной из частей текста, накладывается на другие части. Часто структура сети выполняется таким образом, что для шифрования и дешифрования используется один и тот же алгоритм – различие состоит только в порядке использования материала ключа.

2.2.2.3. Блочный шифр TEA
Блочный алгоритм TEA приведен как пример одного из самых простых в реализации стойких криптоалгоритмов.

2.2.2.4. AES : cтандарт блочных шифров США c 2000 года
В 1998 году был объявлен открытый конкурс на криптостандарт США на несколько первых десятилетий XXI века. Победителем конкурса был признан бельгийский блочный шифр Rijndael. Скорее всего он станет стандартом де-факто блочного шифрования во всем мире.

Назад | Содержание | Вперед

Общие сведения о блочных шифрах

Характерной особенностью блочных криптоалгоритмов является тот факт, что в ходе своей работы они производят преобразование блока входной информации фиксированной длины и получают результирующий блок того же объема, но недоступный для прочтения сторонним лицам, не владеющим ключом. Таким образом, схему работы блочного шифра можно описать функциями Z=EnCrypt(X,Key) и X=DeCrypt(Z,Key)

Ключ Key является параметром блочного криптоалгоритма и представляет собой некоторый блок двоичной информации фиксированного размера. Исходный (X) и зашифрованный (Z) блоки данных также имеют фиксированную разрядность, равную между собой, но необязательно равную длине ключа.

Блочные шифры являются основой, на которой реализованы практически все криптосистемы. Методика создания цепочек из зашифрованных блочными алгоритмами байт позволяет шифровать ими пакеты информации неограниченной длины. Такое свойство блочных шифров, как быстрота работы, используется асимметричными криптоалгоритмами, медлительными по своей природе. Отсутствие статистической корреляции между битами выходного потока блочного шифра используется для вычисления контрольных сумм пакетов данных и в хешировании паролей.

Следующие разработки всемирно признаны стойкими алгоритмами и публикаций о универсальных методах их взлома в средствах массовой информации на момент создания материала не встречалось.

Название алгоритма

Автор

Размер блока

Длина ключа

IDEA

Xuejia Lia and James Massey

64 бита

128 бит

CAST128

64 бита

128 бит

BlowFish

Bruce Schneier

64 бита

128 – 448 бит

ГОСТ

НИИ ***

64 бита

256 бит

TwoFish

Bruce Schneier

128 бит

128 – 256 бит

MARS

Корпорация IBM

128 бит

128 – 1048 бит

Криптоалгоритм именуется идеально стойким, если прочесть зашифрованный блок данных можно только перебрав все возможные ключи, до тех пор, пока сообщение не окажется осмысленным. Так как по теории вероятности искомый ключ будет найден с вероятностью 1/2 после перебора половины всех ключей, то на взлом идеально стойкого криптоалгоритма с ключом длины N потребуется в среднем 2N-1 проверок. Таким образом, в общем случае стойкость блочного шифра зависит только от длины ключа и возрастает экспоненциально с ее ростом. Даже предположив, что перебор ключей производится на специально созданной многопроцессорной системе, в которой благодаря диагональному параллелизму на проверку 1 ключа уходит только 1 такт, то на взлом 128 битного ключа современной технике потребуется не менее 1021 лет. Естественно, все сказанное относится только к идеально стойким шифрам, которыми, например, с большой долей уверенности являются приведенные в таблице выше алгоритмы.

Кроме этого условия к идеально стойким криптоалгоритмам применяется еще одно очень важное требование, которому они должны обязательно соответствовать. При известных исходном и зашифрованном значениях блока ключ, которым произведено это преобразование, можно узнать также только полным перебором. Ситуации, в которых постороннему наблюдателю известна часть исходного текста встречаются повсеместно. Это могут быть стандартные надписи в электронных бланках, фиксированные заголовки форматов файлов, довольно часто встречающиеся в тексте длинные слова или последовательности байт. В свете этой проблемы описанное выше требование не является ничем чрезмерным и также строго выполняется стойкими криптоалгоритмами, как и первое.

Таким образом, на функцию стойкого блочного шифра Z=EnCrypt(X,Key) накладываются следующие условия:

  1. Функция EnCrypt должна быть обратимой.

  2. Не должно существовать иных методов прочтения сообщения X по известному блоку Z, кроме как полным перебором ключей Key.

  3. Не должно существовать иных методов определения каким ключом Key было произведено преобразование известного сообщения X в сообщение Z, кроме как полным перебором ключей.

Давайте рассмотрим методы, с помощью которых разработчики блочных криптоалгоритмов добиваются одновременного выполнения этих трех условий с очень большой долей достоверности.

Все действия, производимые над данными блочным криптоалгоритмом, основаны на том факте, что преобразуемый блок может быть представлен в виде целого неотрицательного числа из диапазона, соответствующего его разрядности. Так, например, 32-битный блок данных можно интерпретировать как число из диапазона 0..4'294'967'295. Кроме того, блок, разрядность которого обычно является "степенью двойки", можно трактовать как несколько независимых неотрицательных чисел из меньшего диапазона (рассмотренный выше 32-битный блок можно также представить в виде 2 независимых чисел из диапазона 0..65535 или в виде 4 независимых чисел из диапазона 0..255).

Над этими числами блочным криптоалгоритмом и производятся по определенной схеме следующие действия (слева даны условные обозначения этих операций на графических схемах алгоритмов) :

Биективные математические функции

Сложение

X'=X+V

Исключающее ИЛИ

X'=X XOR V

Умножение по модулю 2N+1

X'=(X*V) mod (2N+1)

Умножение по модулю 2N

X'=(X*V) mod (2N)

Битовые сдвиги

Арифметический сдвиг влево

X'=X SHL V

Арифметический сдвиг вправо

X'=X SHR V

Циклический сдвиг влево

X'=X ROL V

Циклический сдвиг вправо

X'=X ROR V

Табличные подстановки

S-box (англ. substitute)

X'=Table[X,V]

В качестве параметра V для любого из этих преобразований может использоваться:

  1. фиксированное число (например, X'=X+125)

  2. число, получаемое из ключа (например, X'=X+F(Key))

  3. число, получаемое из независимой части блока (например, X2'=X2+F(X1))

Последний вариант используется в схеме, названной по имени ее создателя сетью Фейштеля (нем. Feistel).

Последовательность выполняемых над блоком операций, комбинации перечисленных выше вариантов V и сами функции F и составляют "ноу-хау" каждого конкретного блочного криптоалгоритма. Размер блоков и длина ключа современных (1999 год) алгоритмов были нами рассмотрены ранее. Один-два раза в год исследовательские центры мира публикуют очередной блочный шифр, который под яростной атакой криптоаналитиков либо приобретает за несколько лет статус стойкого криптоалгоритма, либо (что происходит неизмеримо чаще) бесславно уходит в историю криптографии.

Характерным признаком блочных алгоритмов является многократное и косвенное использование материала ключа. Это диктуется в первую очередь требованием невозможности обратного декодирования в отношении ключа при известных исходном и зашифрованном текстах. Для решения этой задачи в приведенных выше преобразованиях чаще всего используется не само значение ключа или его части, а некоторая, иногда необратимая (небиективная) функция от материала ключа. Более того, в подобных преобразованиях один и тот же блок или элемент ключа используется многократно. Это позволяет при выполнении условия обратимости функции относительно величины X сделать функцию необратимой относительно ключа Key.

Поскольку операция зашифровки или расшифровки отдельного блока в процессе кодирования пакета информации выполняется многократно (иногда до сотен тысяч раз), а значение ключа и, следовательно, функций Vi(Key) остается неизменным, то иногда становится целесообразно заранее однократно вычислить данные значения и хранить их в оперативной памяти совместно с ключом. Поскольку эти значения зависят только от ключа, то оин в криптографии называются материалом ключа. Необходимо отметить, что данная операция никоим образом не изменяет ни длину ключа, ни криптостойкость алгоритма в целом. Здесь происходит лишь оптимизация скорости вычислений путем кеширования (англ. caching) промежуточных результатов. Описанные действия встречаются практически во многих блочных криптоалгоритмах и носят название расширение ключа (англ. key scheduling)

Характеристики

Тип файла
Документ
Размер
286 Kb
Тип материала
Высшее учебное заведение

Список файлов лекций

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6451
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее