Главная » Просмотр файлов » просто теория

просто теория (1023465), страница 7

Файл №1023465 просто теория (Архив подготовки к экзамену) 7 страницапросто теория (1023465) страница 72017-07-10СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 7)

Л Is

находится серия Лаймана: ν = к( —) , (п =

1 п 2, 3, 4, ...). В инфракрасной области были

обнаружены: серия Пашена: ν = л(— -) , (п

3 п

, 1 Is

= 4, 5, 6, ...), серия Брэкета: ν = л(—; if) , (п

4 и

„ 1 1
= 5, 6, 7, ...), серия Пфунда: ν = л(— -) , (п

5 п

, 1 Is

= 6, 7, 8, ...), серия Хэмфи: ν = л(—; Л , (п

6 и
= 7, 8, 9, ...)

Все приведенные выше серии в спектре атома водорода могут быть описаны одной ф-лой, называемой обобщенной ф-лой Бальмера:

1 I
ν = R(— -) , где m - имеет в каждой

т п

данной серии постоянное значение, m = 1, 2, 3, 4,

5, 6 (определяет серию), п - принимает

целочисленные значения, начиная с т+1

(определяет отдельные линии этой серии).

Эффект Комптона не может наблюдаться в видимой области спектра, поскольку энергия фотона видимого света сравнима с энергией связи электрона с атомом, при этом даже внешний электрон нельзя считать свободным. Эф. К. наблюдается не только в эл-тронах, но и на заряженных частицах, например протонах, однако из-за большой массы протона

(1.6⋅10-27 кг, а электрон 9.1⋅10-31 кг) его отдача «просматривается» лишь при рассеянии фотонов очень высоких энергий. Как эф. К. так и фотоэффект на основе квантовых представлений обусловлены взаимодействием фотонов с электронами. В первом случае фотон рассеивается, во втором – поглощается. Рассеивание происходит при взаимодействии фотона со свободным электроном, а фотоэффект со связанными электронами. При столкновении фотона, так как это находится в противоречии с законами сохранения импульса и энергии. Поэтому при взаимодействии фотонов со свободными электронами может наблюдаться только их рассеяние, т.е. эффект Комптона.

54. Опыт Франка Герца. Изучая методом задерживающего потенциала столкновения электронов с атомами газов, экспериментально было доказано, что значения энергии атомов дискретны.

Принципиальная схема их установки приведена на рис. Вакуумная трубка, заполненная парами ртути (давление приблизительно равно 13 Па), содержала катод (К), две сетки (С1 и С2) и анод (А). Электроны, эмитируемые катодом, ускорялись разностью потенциалов, приложенной между катодом и сеткой С1. Между сеткой С2 и анодом приложен небольшой (примерно 0.5 В) задерживающий потенциал. Электроны, ускоренные в области 1, попадают в область 2 между сетками, где испытывают соударения с атомами паров ртути. Электроны, которые после соударений имеют достаточную энергию для преодоления задерживающего потенциала в области 3, достигают анода. При неупругих соударениях электронов с атомами ртути последние могут возбуждаться. Согласно боровской теории, каждый из атомов ртути может получить лишь вполне определенную энергию, переходя при этом в одно из возбужденных состояний.

Из опыта следует, что при увеличении ускоряющего потенциала вплоть до 5 В анодный ток возрастает монотонно, его значение проходит через максимум, затем резко уменьшается и возрастает вновь.

тельного ядра, имеющего заряд Ze (Z – порядковый номер эл-та в системе Менделеева, е

-- элементарный заряд), размер 10-15 -10-14 м и массу , практически равную массе атома, в

области с линейными размерами порядка 10-10 м по замкнутым орбитам движутся электроны, образую электронную оболочку атома. Так атомы нейтральны, то заряд ядра равен суммарному заряду электронов, т.е. вокруг ядра должно вращаться Z электронов. 53. Постулаты Бора. Первая попытка построить качественно новую – квантовую --теорию атома была предпринята Бором. Он поставил перед собой цель связать в единое целое эмпирические закономерности линейчатых спектров, ядерную модель атома Резерфорда (Согласно этой модели, вокруг положительного ядра, имеющего заряд Ze (Z – порядковый номер эл-та в системе Менделеева, е -- элементарный

заряд), размер 10-15 -10-14 м и массу , практически равную массе атома, в области с

линейными размерами порядка 10-10 м по замкнутым орбитам движутся электроны, образую электронную оболочку атома. Так как атомы нейтральны, то заряд ядра равен суммарному заряду электронов, т.е. вокруг ядра должно вращаться Z электронов) и квантовый характер излучения и поглощения света. Два постулата: Первый постулат Бора (постулат стационарных состояний): в атоме

56. Опытное обоснование Волного Дуализма

Вскоре гипотеза де Бройля была подтверждена экспериментально. В 1927 г. американские физики К. Дэвиссон (1881 — 1958) и Л. Джермер (1896 — 1971) обнаружили, что пучок электронов, рассеивающийся от естественной дифракционной решетки — кристалла никеля,— дает отчетливую дифракционную картину. Дифракционные максимумы соответствовали формуле Вульфа — Брэггов (182.1), а брэгговская длина волны оказалась в точности равной длине волны, вычисленной по формуле (213.2). В дальнейшем формула де Бройля была подтверждена опытами П. С. Тартаковского и Г. Томсона, наблюдавших дифракционную картину при прохождении пучка быстрых электронов (энергия «50 кэВ) через металлическую фольгу (толщиной ж 1 мкм). Так как дифракционная картина исследовалась для потока электронов, то необходимо было доказать, что волновые свойства присущи не только потоку большой совокупности электронов, но и каждому электрону в отдельности. Это уда­лось экспериментально подтвердить в 1948 г. советскому физику В. А. Фабриканту (р. 1907). Он показал, что даже в случае столь слабого электронного пучка, когда каждый электрон проходит через прибор независимо от других (промежуток времени между двумя электронами в 104 раз больше времени прохождения электроном прибора), возникающая при длительной экспозиции дифракционная картина не отличается от дифракционных картин,

57. Соотношение неопределенностей Гейзенберга

Согласно двойственной корпускулярно-волновой природе частиц вещества, для описания микрочастиц используются то волновые, то корпускулярные представления. Поэтому приписывать им все свойства частиц и все свойства волн нельзя.

В. Гейзенберг, учитывая волновые свойства микрочастиц и связанные с волновыми свойствами ограничения в их поведении, пришел в 1927 г. к выводу, что объект микромира невозможно одновременно с любой наперед заданной точностью характеризовать и координатой и импульсом. Согласно

соотношению неопределенностей Гейзенберга,

микрочастица (микрообъект) не может иметь од­новременно и определенную координату (х, у, z), и определенную соответствующую проекцию импульса х, ру, рг), причем неопределенности этих величин удовлетворяют условиям, т.е. произведение координаты и соответствующей ей проекции импульса не может быть меньше величины порядка h.

Из соотношения неопределенностей (215.1) следует, что, например, если микрочастица находится в состоянии с точным значением координаты ( = It), то в этом состоянии соответствующая проекция ее импульса оказывается совершенно неопределенной (Др, -* оо ), и наоборот. Таким образом, для микрочастицы не существует состояний, в которых ее координаты и импульс имели бы одновременно точные значения. Отсюда вытекает и фактическая невозможность

микрочастиц описывается принципиально по-новому — с помощью волновой функции, которая является основным носителем информации об их корпускулярных и волновых свойствах. Вероятность нахождения частицы в элементе объемом dV равна

dll^lVl'dV.

Величина

m2=dlt7dV

(квадрат модуля Мг-функции) имеет смыслу
плотности вероятности, т. е. определяет
вероятность нахождения частицы в единичном
объеме в окрестности точки с координатами х, у, z.
Таким образом, физический смысл имеет не
сама ^--функция, а квадрат ее

модуля.-К I , которым за­дается интенсивность волн де Бройля.

Вероятность найти частицу в момент времени в конечном объеме V, согласно теореме сложения вероятностей, равна

W


= \ dW=\ \V\2dV.

62. Движение свободной частицы.


При движении свободной частицы (U(x) = 0) ее полная энергия совпадает с кинетической. Для свободной частицы, движущейся вдоль оси х, уравнение Шредингера (217.5) для стационарных состояний примет вид

И (219.1)

Прямой подстановкой можно убедиться в том, что частным решением уравнения i (219.1) является функция ф (х) = А е' л, где A=const и к = const, с собственным значением энергии

C = ft& / (2т). (219.2) Функция г£ (х) е'к* = А е('/'•)v^ni^'

представляет собой только координатную 4асть волновой функции lF (xt t). Поэтому зависящая от времени волновая функция, согласно (217.4),

Ч^х, i)=A е-'щ'+'"** = Л eH'/*)t«~ft«)

(219.3)

(здесь ш = £/Л И ft = pj/ft). Функция (219.3) представляет собой плоскую мо­нохроматическую волну де Бройля (см. 217.2)). Из выражения (219.2) следует, что зависимость энергии от импульса

£ = £V/(2m) =оУ(2т1

pi/[2т]

оказывается обычной для нерелятивистских частиц. Следовательно, энергия свободной

63.Частица в яме. Проведем качественный анализ решений уравнения Шредингера применительно к частице в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками». Такая «яма» описывается потенциальной энергией вида (для простоты принимаем, что частица движется вдоль оси х)

где / — ширина «ямы», а энергия отсчиты-вается от ее дна (рис. 296).

Уравнение Шредингера (217.5) для стационарных состояний в случае одномерной задачи запишется в виде

На границах

«ямы» (при х = 0 — (£— U) Ц> = 0.


и х = /) непрерывная
волновая функция

также должна

t(0)=*(/)=0.


обращаться в нуль. Следовательно, гра­ничные условия в данном случае имеют вид


одновременно с любой наперед заданной точно­стью измерить координату и импульс микрообъекта. Так как в классической механике принимается, что измерение координаты и импульса может быть произведено с любой точностью, то соотношение неопределенностей является, таким образом, квантовым ограничением применимости классической механики к микрообъектам.

58. Волновая функция и ее статистический смысл

W~\W (x, yt г, l)\'


Немецкий физик М. Борн в 1926 г. предположил, что по волновому закону меняется не сама вероятность, а величина, названная амплитудой вероятности и обозначаемая V (х, у, 2, ().Эту величину называют также волновой функцией (или 4Г -функцией). Амплитуда вероятности может быть комплексной, и вероятность W пропорциональна квадрату ее модуля: - функция, комплексно

сопряженная с *¥■).
Таким образом, описание
состояния микрообъекта с помощью волновой
функции имеет статистический, вероятностный
характер: квадрат модуля волновой функции
(квадрат модуля амплитуды волн де Бройля)
определяет вероятность нахождения частицы в
момент времени в области с

координатами

Характеристики

Тип файла
Документ
Размер
1,77 Mb
Тип материала
Предмет
Высшее учебное заведение

Список файлов ответов (шпаргалок)

Архив подготовки к экзамену
Ответы на теорию
теория для телефонов (в виде hml) теория 2010 с ответами (скач сайт кориолан)
01
02
03
04
05
06
07
image001.emz
image003.emz
image005.emz
image007.emz
08
image003.emz
image005.emz
image007.emz
image009.emz
Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7038
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее