Главная » Просмотр файлов » просто теория

просто теория (1023465), страница 3

Файл №1023465 просто теория (Архив подготовки к экзамену) 3 страницапросто теория (1023465) страница 32017-07-10СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

т]аЬтЛ/(а+Ь)

где m

результирующей волны в любой точке пространства. Согласно принципу Г-Ф каждый элемент волновой пов-ти S служит источником вторичной волны, амплитуда которой пропорциональна величине элемента dS. Ампл. сферич. волны убывает с расстоянием по закону 1/г. След. от кажд. участка dS волновой пов-ти в точку Р, лежащую перед этой пов-тью, приходит

andS , ,

колебание dE = К—cos(a>t +a0 - кг) , где г

cot +(Xq — в месте располож. волновой пов-ти S,

к - волновое число. Мн-тель а0 определяется ампл-дой светового колеб. в том месте, где находится dS. К завис. от ср между нормалью п к dS и направл-ием от dS к Р. При q> =0 К -максимален, при =п/2 - он обращается в 0. Результирующее колебание в точке Р будет:

kr)dS . Эта



Е = K{q>)—cos{(ot

J Г

формула является аналитическим выражением принципа Г-Ф. Метод зон Френеля. Принцип Г-Ф. должен был ответить на вопрос о прямолинейном распространении света. Френель решил эту задачу, рассмотрев взаимную интерференцию вторичных волн и применив след. прием. Найдем в произвольной точке М амплитуду световой волны, распространяющейся в однородной среде из точечного источника монохроматического света S0. Согласно принципу Г-Ф. заменим действие источника S действием воображаемых источников, расположенных на вспомогательной поверхности Ф, являющейся пов-тью фронта волны,

Монохроматический свет от источника S падает под углом 45° на плоскопараллельную пластинку Рь Сторона пластинки, удаленная от S, посеребренная и полупрозрачная, разделяет луч на две части: луч 1 (отражается от посе­ребренного слоя) и луч 2 (проходит через него). Луч 1 отражается от зеркала Мi и, возвращаясь обратно, вновь проходит через пластинку Рi (луч Г). Луч 2 идет к зеркалу М2, отражается от него, возвращается обратно и отражается от пластинки Рi (луч 2'). Так как первый из лучей проходит пластинку Рi дважды, то для компенсации возникающей разности хода на пути второго луча ставится пластинка Р2 (точно такая же, как и Рь только не покрытая слоем серебра). Лучи Г и 2' когерентны; следовательно, будет наблюдаться интерференция, результат которой зависит от оптической разности хода луча 1 от точки О до зеркала Мi и луча 2 от точки О до зеркала М2. При перемещении одного из зеркал на расстояние Zq /4 разность хода обоих лучей

увеличится на Zq /2 и произойдет смена

освещенности зрительного поля. Следовательно, по незначительному смещению ин­терференционной картины можно судить о малом перемещении одного из зеркал и использовать интерферометр Майкельсона для точного (порядка 10"7 м) измерения длин

т. Р. Следовательно, число открытых зон будет:

Г0 , 1 К

т =( 1—) , а амплитуда в точке Р будет

А а Ъ

равна А=А1-А2+Аз-.. .+(-)Аш, знак минус берется, если m - нечетное и плюс - четное. 2. Дифракция от круглого диска. Поместим между источником света S и точкой наблюдения Р непрозрачный диск радиуса г0 . Если диск

закроет m первых зон Френеля, амплитуда в точке Р будет равна:

"■ ~ Ат+\


2


Ли+2 +Ат+Ъ -■■■

16. Зонные пластинки. Из теории Френеля (световая волна, возбуждаемая каким-либо источником S, может быть представлена как р-тат суперпозиции когерентных вторичных волн, «излучаемых» фиктивными источниками, такими источниками могут служить бесконечно малые элементы любой замкнутой пов-ти, охватывающей источник S). следует, что в том случае, когда в отверстии укладывается только одна зона Френеля, амплитуда колебаний в точке М А=А1, т.е.

19. Дифракция от щели. Бесконечно длинную щель можно образовать, расположив ряжом две обращенные в разные стороны полуплоскости. Следовательно, задача и дифракции Френеля от щели может быть решена с помощью спирали Карню. Волновую пов-ть падающего света, плоскость щели и экран, на котором наблюдается дифракционная картина, будем считать параллельными друг другу. Для точки Р, лежащей против середины щели, начало и конец результирующего вектора находятся в симметричных относительно начала координат точках спирали. Если сместиться в точку Р’, лежащую против края щели, начало результирующего вектора переместится в середину спирали О.

Конец вектора переместится по спирали в направлении полюса F1. При углублении в область геометрической тени начало и конец результирующего вектора будут скользить по спирали и в конце концов окажутся на наименьшем расстоянии друг от друга (вектор, соответствующий точке Р’’).

20. Дифракционная решетка и дифрак­ционные спектры. Дифракционной решеткой называется последовательность из большого числа N одинаковых параллельных щелей. Ши­рина каждой щели равна Ь, расстояние между соседними щелями, которое называется периодом решетки, равно d. Расположим параллельно ре­шетке собирательную линзу, в фокальной пл-ти которой поставим экран. Выясним характер диф. картины, получающейся на экране при падении на решетку световой волны (для простоты будем считать, что волна падает на решетку нормально). Каждая из щелей даст на экране картину, описы­ваемую кривой, изобр на рис. Картины от всех щелей придутся на одно и то же место экрана (независимо от положения щели, центральный максимум лежит против центра линзы). Если бы колебания, приходящие в точку Р от различных щелей, были некогерентными, результирующая картина от N щелей отличалась бы от картины, создаваемой одной щелью лишь тем, что все интенсивности выросли бы в N раз. Однако, колебания от различных щелей являются в большей или меньшей степени когерентными; поэтому результирующая интенсивность будет отлична от Ш„ (/„ —

интенсивность, создаваемая одной щелью). Предполагая, что радиус когерентности (максимальное поперечное направлению распространению волны расст., на котором возможно проявление интерференции) падающей волны намного превышает длину решетки. Так что колебания от всех щелей можно считать когерентными друг относительно друга. В этом случае результир. колеб в точке Р пред ставл. собой сумму N колебаний с одинаковыми ампл. Аф , сдвинутых друг относительно друга по фазе

21. Критерий разрешения Релея. Изобра­жения двух близлежащих одинаковых точечных источников или двух близлежащих спектральных

линий с

равными интенсивностями и одинаковыми симметричными контурами разрешимы (разделены для восприятия), если центральный максимум дифракционной картины от одного источника (линии) совпадает с первым миниму­мом дифр. картины от другого. При выполнении критер. Рел. интенсивность «провала» между максимумами составляет 80% интенсивности в максимуме, что является достаточным для раз­решения линий \ и /12 .Если критерий Релея нарушен, то наблюдается одна линия.

22.1. Разрешающая способность решетки.

Разрешающей способностью спектрального при­бора назовем безразмерную величину R = А/(ЗА) , где ЗА - абсолютное значение минимальной разности длин волн двух соседних спектральных линий, при которой эти линии регистрируются раздельно. Пусть максимум т-го порядка для длины волны Aj наблюдается под

углом q> , т.е. dsincp = tnAj . При переходе от

22. Дифракция решетки. Дифракционная картина на решетке определяется как р-тат вза­имной интерференции волн, идущих от всех щелей. Т.е. в диф. решетке осуществляется мно­голучевая интерференция когерентных дифраги­рованных пучков света, идущих от всех щелей. Пусть плоская монохроматическая волна падает нормально к пл-ти решетки Так как щели нх-ся на одинак. друг от друга расст., то разность хода лучей, идущих от двух соседних щелей, будут для данного направления q> одинаковы в пределах всей дифракционной

решетки: А = CF = (a+b)smq> = dsmq> . Очевидно что в тех направлениях ,в которых ни одна из щелей не распространяет свет, он не будет распространяться и при двух щелях, т.е. прежние минимумы интенсивности будут наблюдаться в направл, опред-мых усл-ием as,mq> = ±тА (т=1,2,3,...). Кроме того, вследствие взаимной интерференции световых лучей, посылаемых двумя щелями, в некоторых направлениях они будут гасить друг друга, т.е. возникнут дополнительные минимумы. Очевидно, что эти дополнительные минимумы будут наблюдаться в тех направлениях, которым соответствует разность хода лучей А/2,ЗА/2,..., посылаемых, например, от крайних левых точек М и С обеих щелей. Условие дополнительных минимумов:

dsintp = ±(2т +\)А12,(т = 0,1,2,...). Наобо рот, действие одной щели будет усиливать дейст­вие другой, если dsincp = ±тА (т=0,1,2,.) т.е.

23. Дифракция рентгеновских волн. Это не

видимые глазом эл. магн. излучение м длиной

волны 10~ ДО нм. Проникают через некоторые непрозрачные для видимого света материалы, испускаются при быстрых торможениях электронов в вещ-ве и при квантовых переходах электронов с внеш. эл. оболочек атома на внутр. Поставим две дифр. решетки одну за другой так, чтобы их штрихи были взаимно перпендикуляр­ными. Первая решетка (пусть ее штрихи вертикальны) даст в горизонтальном направлении ряд максимумов, положения которых определяются условием dx%mq\ = ±mlA,(m = 0,1,...). Вторая решетка (с

горизонтальными штрихами) разобьет каждый из образовавшихся таким образом пучков на расположенные по вертикали максимумы, положения которых определяются условием: d2 sinq>2 = ±т2А,(т = 0,1,2,...) .

В итоге дифракционная картина будет иметь вид правильно расположенных пятен, каждому из которых соответствуют два целочисленных индекса «Jj и т2 . Такая же диф. картина

получается, если вместо двух реальных решеток взять одну прозрачную пластинку с нанесенными на нее двумя системами взаимно перпендикулярных штрихов. Дифракция так же наблюдается на трехмерных структурах. т.е. пространственных образованиях, обнаруживающих периодичность по трем не лежащим в одной пл-ти направлениям. Подобными структурами являются все крист

на одну и ту же величину 5 . Интенсивность при

sin2(jV<5/2)
этих условиях равна: I ш = I _ ,

sin (5/2)

где /„ =Ка2 - интенсивность, создаваемая

каждым из лучей в отдельности. Из верхнего рисунка видно, что разность хода от соседн щелей равна А = d sin q> Следов, разность фаз

Дифракционный спектр Распределение ин­тенсивности на экране, получаемое вследствие дифракции (это явление приведено на нижнем рис.). Основная часть световой энергии сосредо­точена в центральном максимуме. Сужение щели приводит к тому, что центральный максимум расплывается, а его яркость уменьшается (это, естественно, относится и к другим максимумам). Наоборот, чем щель шире (Ъ > X ), тем картина ярче, но дифракционные полосы уже, а число самих полос больше. При Ъ » X в центре получается резкое изображение источника света, т.е. имеет мет прямолинейное распространение света. Эта картина будет иметь место только для монохроматического света. При освещении щели белым светом, центральный максимум будет иметь место белой полоски, он общий для всех длин волн (при = О разность хода равна нулю для всех X).

Интенсивность света при этом достигнет минимума. При дальнейшем скольжении по спирали начало и конец вектора снова отойдут друг от друга и интенсивность будет расти. То же самое будет происходить при смещении из точки Р в противоположное сторону, так как дифракционная картина симметрична относительно середины щели.

Если изменять ширину щели, сдвигая полуплоскости в противоположные стороны, интенсивность в средней точке Р будет пульсировать, проходя попеременно через максимумы (а) и отличные от нуля минимумы (б).

вдвое больше, чем в отсутствие непрозрачного экрана с отверстием (соответственно

интенсивность в точке М I = А = Ау ).

Амплитуда А можно значительно увеличить с помощью с помощью зонной пластинки -стеклянной пластинки, но пов-ть которой так нанесено непрозрачное покрытие, что оно закрывает все четные зоны Френеля и оставляет открытыми все нечетные зоны (либо наоборот). Если общее число зон, уменьшающихся на пластинке, равно 2к, то А=Аi+А3+.. .+А-1- Если 2к не слишком велико, то Д>£-1 »4 и А и кАу , т.е. освещенность экрана в точке М в к2

раз больше, чем при беспрепятственном распространении света от источника в точку М. Зонная пластинка действует на свет подобно собирающей линзе

Характеристики

Тип файла
Документ
Размер
1,77 Mb
Тип материала
Предмет
Высшее учебное заведение

Список файлов ответов (шпаргалок)

Архив подготовки к экзамену
Ответы на теорию
теория для телефонов (в виде hml) теория 2010 с ответами (скач сайт кориолан)
01
02
03
04
05
06
07
image001.emz
image003.emz
image005.emz
image007.emz
08
image003.emz
image005.emz
image007.emz
image009.emz
Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7035
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее