Главная » Просмотр файлов » ответы на билеты (распечатать-разрезать)

ответы на билеты (распечатать-разрезать) (1023462), страница 4

Файл №1023462 ответы на билеты (распечатать-разрезать) (Архив подготовки к экзамену) 4 страницаответы на билеты (распечатать-разрезать) (1023462) страница 42017-07-10СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

Оптическая длина пути.

L = S*n, S - геометрическая длина пути, n – показатель преломления среды.

Оптическая разность хода – разность оптических длин, проходимых волнами.

Δ = L2 - L1 = S2*n2 – S1*n1

Способы получения интерференционных картин.

М етод Юнга. Свет от ярко освещено щели падает на две щели играющие роль когерентных источников.

З еркала Френеля. Свет от источника падает расходящимся пучком на 2 плоских зеркала, расположенных под малым углом. Роль когерентных источников играют мнимые изображения источника. Экран защищен от прямого попадания лучей заслонкой.

Б ипризма Френеля. Свет от источника преломляется в призмах, в результате чего за бипризмой распространяются световые лучи, как бы исходящие из мнимых когерентных источников.

З еркало Ллойда. Точечный источник находится близко к поверхности плоского зеркала. Когерентными источниками служат сам источник и его мнимое изображение.

3) Волновые свойства частиц. Соотношение неопределенности Гейзенберга. Уравнение Шредингера.

Для описания квантовых систем вводится волновая функция ψ(x,y,z,t). Она определяется таким образом, что вероятность dw того что частица находится в элементе объема dV была равна: dw = | ψ^2|dV.Физический смысл имеет не сама функция, а квадрат ее модуля которым задается интенсивность волн Де Бройля.

Волновая функция, характеризующая вероятность обнаружения действия микрочастицы в элементе объема должна быть: 1) конечной; 2) однозначной; 3) непрерывной. Волновая функция удовлетворяет свойству суперпозиции.

Для описания микрочастиц используются то волновые, то корпускулярные представления. Поэтому им нельзя приписывать все свойства частиц и волн. Согласно соотношению неопределенностей Гейзенберга микрочастица е может иметь одновременно и определенную координату (x,y,z) и определенную соответствующую проекцию импульса (px,py,pz), причем неопределенности этих величин удовлетворяют условиям, т.е. произведение координаты и соответствующей ей проекции импульса не может быть меньше величины порядка h. Из соотношения следует, что, например, если частица находится в состоянии с точным значением координаты, то в этом состоянии проекция ее импульса оказывается совершенно неопределенной, и наоборот.

i*ћ*ψ/t = - ћ^2 *Δψ/ 2m + U(x,y,z,t)* ψ

mмасса микрочастицы, Δ - оператор Лапласа (в декартовых координатах оператор Лапласа имеет вид Δ= ^2/x^2 + ^2/y^2 + ^2/z^2), U(x,y,z,t) − функция координат и времени, описывающая воздействие на частицу силовых полей.

Уравнение называется общим уравнением Шредингера. Оно дополняется условиями, накладываемыми на функцию Ψ :

1) Ψ − конечная, непрерывная и однозначная.

2) производные от Ψ по x, y, z, t непрерывны.

3) функция |Ψ|^2 должна быть интегрируема.

ћ^2 *Δψ/ 2m + (E - U(x,y,z,t))* ψ = 0

Это уравнение не содержит времени и называется стационарным уравнением Шредингера.

.

Билет №10

2)Явление, при котором происходит пространственное пере-распределение энергии светового излучения при наложении двух или нескольких световых волн, называется интерференцией.

Интерференция - одно из явлений, в котором проявляются волновые свойства света. Необходимым условием интерференции волн является их когерентность.

Два колебательных процесса называются когерентными, ес-ли разность фаз складывающихся колебаний остается постоянной в течение времени, достаточного для наблюдений.

Одним из способов получения гогерентных волн является деление волны по фронту, но

две и более когерентные волны можно также получить путем деления исходной волны по амплитуде.

Именно таким образом когерентные волны получаются при наблюдении явлений интерференции света в тонких пленках.

Полосы равной толщины возникают при отражении парал-лельного пучка лучей от поверхности тонкой пленки, толщина которой неодинакова и меняется по какому-либо закону. Оптическая разность хода интерферирующих лучей будет меняться при переходе от одних точек поверхности пленки к другим из-за изменения толщины пленки. Интенсивность света будет одинакова в тех точках, где одинакова толщина пленки, поэтому интерференционная картина называется полосами равной толщины. Полосы равной толщины локализованы вблизи поверхности пленки.

Пусть на плоскопараллельную пластину толщиной h и с показателем преломления n падает рассеянный монохроматический свет с длиной волны λ. Из условия Δ = 2nh cosβ следует, что при n,h = const разность хода зависит только от угла падения лучей β. Очевидно, что лучи, падающие под одним углом, будут иметь одну и ту же разность хода. Если параллельно пластине разместить линзу L, в фокальной плоскости которой расположен экран Э, то эти лучи соберутся в одной точке экрана

В рассеянном свете имеются лучи самых разных направлений. Лучи, падающие на пластину под углом α1, соберутся на экране в точке Р1, интенсивность света в которой определяется разностью хода Δ. Таким образом, лучи, падающие на пластину во всевозможных плоскостях, но под углом α1, создают на экране совокупность одинаково освещенных точек, расположенных на окружности с центром в точке О. Аналогично, лучи, падающие под другим углом α2, создадут на экране совокупность одинаково освещенных точек, но расположенных на окружности другого радиуса. Следовательно, на экране будет наблюдаться система концентрических окружностей, называемых линиями равного наклона.

Классическим примером полос равной толщины являются кольца Ньютона. Ньютон наблюдал интерференционные полосы воздушной прослойке между плоской поверхностью стекла и плосковыпуклой линзой с большим радиусом кривизны, прижат стеклу. При нормальном падении света на линзу интерференционные полосы имеют форму концентрических колец, при наклонном - эллипсов. Они получаются вследствие интерференции лучей, отраженных от верхней и нижней границ воздушной прослойки между линзой и стеклянной пластиной.

3) Ядерными реакциями называются превращения атомных ядер, вызванные их взаимодействием с различными частицами или друг с другом. Как правило, взаимодействие реагирующих частиц или ядер возникает благодаря действию ядерных сил при сближении частиц до расстояний ∼10-15 м.

К ядерным реакциям относятся реакции деления, синтеза, взаимодействия ядер с легкими частицами и др. При протекании любой ядерной реакции выполняются все фундаментальные законы сохранения (энергии, импульса, заряда и др.), кроме того выполняется ряд законов сохранения, специфических только для ядерных реакций, к ним относятся законы сохранения барионного (числа нуклонов) и лептонного (числа лептонов Лептонами называют класс элементарных частиц, не участвующих в сильных взаимодействиях, например электрон) зарядов.

Я дерные реакции могут сопровождаться как поглощением, так и выделением энергии. Энергия Q, выделяющаяся в результате реакции, определяется разностью масс покоя исходных Мi и конечных Мk ядер и частиц:

Билет №11

2) Интерференция света. Практическое применение явления интерференции. Интерферометры. Интерферометр Майкельсона.

Явление интерференции света состоит в отсутствии суммирования интенсивностей световых волн при их наложении, т.е. во взаимном усилении этих волн в одних точках

пространства и ослаблении – в других. Необходимым условием интерференции волн

является их когерентность. Необходимо, кроме того, чтобы колебания векторов Е электромагнитных полей интерферирующих волн совершались вдоль одного и того же или близких направлений.

Явление интерференции света используется в спектральном анализе, для точного измерения расстояний и углов, в задачах контроля качества поверхности, для создания светофильтров, зеркал, просветляющих покрытий. На явлении интерференции основана голография.

Интерферометры – оптические приборы, основанные на явлении интерференции световых волн. Они получили наибольшее распространение как приборы для измерения длин волн спектральных линий и их структуры; для измерения показателя преломления прозрачных сред; в метрологии для абсолютных и относительных измерений длин и перемещений объектов; измерения угловых размеров звезд; для контроля формы и деформации оптических деталей и чистоты металлических поверхностей. Принцип действия основан на пространственном разделении пучка света с целью получения нескольких когерентных лучей, которые проходят различные оптические пути, а затем сводятся вместе и наблюдается результат их интерференции.

Параллельный пучок света от источника L падает на полупрозрачную пластину P1, разделяется на два когерентных пучка 1 и 2. После отражения от зеркал M1 и M2 и повторного прохождения луча 2 через пластину P1 оба луча проходят в направлении АО через объектив О2 и интерферируют в его фокальной плоскости. Пластина P2 компенсирует разность хода

между лучами 1 и 2, возникающую из-за того, что луч 2 дважды проходит через пластину P1, а луч 1 ни одного.

3) Излучение и поглощение электромагнитных волн. Спонтанное и вынужденное поглощение. Резонансное поглощение. Ширина спектральной линии. Коэффициенты Эйнштейна

Процесс излучения электромагнитной волны атомом может быть двух типов: спонтанным и вынужденным. При спонтанном излучении атом переходит с верхнего энергетического уровня на нижний самопроизвольно, без внешних воздействий на атом. Спонтанное излучение атома обусловлено только неустойчивостью его верхнего (возбужденного) состояния, вследствие кото­рой атом рано или поздно освобождается от энергии возбуждения путем излучения фотона. Различные атомы излучают спон­танно, т.е. независимо друг от друга, и генерируют фотоны, ко­торые распространяются в различных направлениях, имеют раз­личные фазы и направления поляризации. Следовательно, спонтанное излучение является некогерентным.

Излучение может возникать также и в том случае, если на возбужденный атом действует электромагнитная волна с часто­той ν, удовлетворяющей соотношению hν=Em- En, где Em, и En -энергии квантовых состояний атома (частота ν при этом называ­ется резонансной). Возникающее при этом излучение является вынужденным. В каждом акте вынужденного излучения участ­вуют два фотона. Один из них, распространяясь от внешнего ис­точника (внешним источником для рассматриваемого атома мо­жет являться и соседний атом), воздействует на атом, в результа­те чего испускается фотон. Оба фотона имеют одинаковое на­правление распространения и поляризации, а также одинаковые частоты и фазы. То есть вынужденное излучение всегда коге­рентно с вынуждающим.

Атомы не только испускают, но и поглощают фотоны с ре­зонансными частотами. При поглощении фотона атомы возбуж­даются. Поглощение фотона всегда является вынужденным про­цессом, происходящим под действием внешней электромагнит­ной волны. В каждом акте поглощается один фотон, а участвую­щий в этом процессе атом переходит в состояние с большей.

Ширина спектральных линий, интервал частот v (или длин волн l = c/n, с — скорость света), характеризующий спектральные линии в спектрах оптических атомов, молекул и др. квантовых систем.

До сих пор мы рассматривали только два вида переходов атомов между энергетическими уровнями: спонтанные (самопроизвольные) переходы с более высоких на более низкие уровни и происходящие под действием излучения (вынужденные) переходы с более низких на более высокие уровни. Переходы первого вида приводят к спонтанному испусканию атомами фотонов, переходы второго вида обусловливают поглощение излучения веществом. В 1918 г. Эйнштейн обратил внимание на то, что двух указанных видов излучения недостаточно для объяснения существования состояний равновесия между излучением и веществом. Действительно, вероятность спонтанных переходов определяется лишь внутренними свойствами атомов и, следовательно, не может зависеть от интенсивности падающего излучения, в то время как вероятность «поглощательных» переходов зависит как от свойств атомов, так и от интенсивности падающего излучения. Для возможности установления равновесия при произвольной интенсивности падающего излучения необходимо существование «испускательных» переходов, вероятность которых возрастала бы с увеличением интенсивности излучения, т. е. «испускатель­ных» переходов, вызываемых излучением. Возникающее в результате таких переходов излучение называется вынужденным или индуцированным. Исходя из термодинамических соображений, Эйнштейн доказал, что вероятность вынужденных переходов, сопровождающихся излучением, должна быть равна вероятности вынужденных переходов, сопровождающихся поглощением света. Таким образом, вынужденные переходы могут с равной вероятностью происходить как в одном, так и в другом направлении.

Вынужденное излучение обладает весьма важными свойствами. Направление его распространения в точности совпадает с направлением распространения вынуждающего излучения, т. е. внешнего излучения, вызвавшего переход. То же самое относится к частоте, фазе и поляризации вынужденного и вынуждающего излучений. Следовательно, вынужденное и вынуждающее излучения оказываются строго когерентными. Эта особенность вынужденного излучения лежит в основе действия усилителей и генераторов света, называемых лазерами.

Характеристики

Тип файла
Документ
Размер
963,5 Kb
Тип материала
Предмет
Высшее учебное заведение

Список файлов ответов (шпаргалок)

Архив подготовки к экзамену
Ответы на теорию
теория для телефонов (в виде hml) теория 2010 с ответами (скач сайт кориолан)
01
02
03
04
05
06
07
image001.emz
image003.emz
image005.emz
image007.emz
08
image003.emz
image005.emz
image007.emz
image009.emz
Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7045
Авторов
на СтудИзбе
259
Средний доход
с одного платного файла
Обучение Подробнее