ответы на билеты (распечатать-разрезать) (1023462), страница 13
Текст из файла (страница 13)
Расстояние между соседними максимумами или минимумами назовем шириной интерференционной полосы:
Видно, что расстояние между интерференционными полосами увеличивается с уменьшением расстояния между источниками D. Для того, чтобы интерференционная картина наблюдалась отчетливо, необходимо выполнение условия D«L.
3) Ядерные реакции. Реакции деления и синтеза. Цепная реакция. Законы сохранения в ядерных реакциях.
Ядерными реакциями - превращения атомных ядер, вызванные их взаимодействием с различными частицами или друг с другом. Ядерные реакции могут сопровождаться как поглощением, так и выделением энергии. Энергия Q, выделяющаяся в результате реакции (тепловой эффект реакции), определяется разностью масс покоя исходных Мi и конечных Мk ядер и частиц: Q = ( ∑Мi - ∑Мk )*c^2. Q>0 – экзотермическая реакция (выделение тепла), Q<0 – эндотермическая.
Тяжелое ядро, возбужденное при захвате нейтрона, может разделиться на 2 равные части (осколки деления). Неустойчивость тяжелых ядер обусловлена взаимным отталкиванием большого числа протонов. Деление ядра сопровождается выделением энергии. Тяжелые ядра способны к делению если Z^2/A ≥ 17, где Z^2/A – параметр деления.
(Z^2/A)крит = 49 – критический параметр деления.
Реакция синтеза – образование из легких ядер более тяжелых. Выделяется значительно больше энергии чем при деление.
Каждый из мгновенных нейтронов, возникших в реакции деления, взаимодействуя с соседними ядрами делящегося в-ва, вызывает в них реакцию деления. При этом идет рост числа актов деления – начинается цепная реакция – ядерная реакция, в которой частицы, вызывающие реакцию, образуются как продукты этой реакции. Условие – наличие размножающихся нейтронов. k – коэффициент размножения нейтронов – отношение числа нейтронов, возникающих в некотором звене реакции, к числу нейтронов в предшествующем звене. Необходимое условие – k>1.
При протекании любой ядерной реакции выполняются все фундаментальные законы сохранения (энергии, импульса, заряда и др.), кроме того выполняется ряд законов сохранения, специфических только для ядерных реакций, к ним относятся законы сохранения барионного (числа нуклонов) и лептонного (числа лептонов) зарядов.
Билет №25
2) Интерференция в тонких пленках. Изменение фазы волны при отражении. Полосы равной толщины и равного наклона
Явление, при котором происходит пространственное пере- распределение энергии светового излучения при наложении двух или нескольких световых волн, называется интерференцией.
Интерференция - одно из явлений, в котором проявляются волновые свойства света. Необходимым условием интерференции волн является их когерентность.
Два колебательных процесса называются когерентными, ес-ли разность фаз складывающихся колебаний остается постоянной в течение времени, достаточного для наблюдений.
Одним из способов получения гогерентных волн является деление волны по фронту, но
две и более когерентные волны можно также получить путем деления исходной волны по амплитуде.
Именно таким образом когерентные волны получаются при наблюдении явлений интерференции света в тонких пленках.
Полосы равной толщины возникают при отражении парал-лельного пучка лучей от поверхности тонкой пленки, толщина которой неодинакова и меняется по какому-либо закону. Оптическая разность хода интерферирующих лучей будет меняться при переходе от одних точек поверхности пленки к другим из-за изменения толщины пленки. Интенсивность света будет одинакова в тех точках, где одинакова толщина пленки, поэтому интерференционная картина называется полосами равной толщины. Полосы равной толщины локализованы вблизи поверхности пленки.
Пусть на плоскопараллельную пластину толщиной h и с показателем преломления n падает рассеянный монохроматический свет с длиной волны λ. Из условия Δ = 2nh cosβ следует, что при n,h = const разность хода зависит только от угла падения лучей β. Очевидно, что лучи, падающие под одним углом, будут иметь одну и ту же разность хода. Если параллельно пластине разместить линзу L, в фокальной плоскости которой расположен экран Э, то эти лучи соберутся в одной точке экрана
В рассеянном свете имеются лучи самых разных направлений. Лучи, падающие на пластину под углом α1, соберутся на экране в точке Р1, интенсивность света в которой определяется разностью хода Δ. Таким образом, лучи, падающие на пластину во всевозможных плоскостях, но под углом α1, создают на экране совокупность одинаково освещенных точек, расположенных на окружности с центром в точке О. Аналогично, лучи, падающие под другим углом α2, создадут на экране совокупность одинаково освещенных точек, но расположенных на окружности другого радиуса. Следовательно, на экране будет наблюдаться система концентрических окружностей, называемых линиями равного наклона.
Классическим примером полос равной толщины являются кольца Ньютона. Ньютон наблюдал интерференционные полосы воздушной прослойке между плоской поверхностью стекла и плосковыпуклой линзой с большим радиусом кривизны, прижат стеклу. При нормальном падении света на линзу интерференционные полосы имеют форму концентрических колец, при наклонном - эллипсов. Они получаются вследствие интерференции лучей, отраженных от верхней и нижней границ воздушной прослойки между линзой и стеклянной пластиной.
3) Элементарные частицы и античастицы. Виды взаимодействия частиц. Кварки. Систематика элементарных частиц.
Элементарными частицами именуют большую группу мельчайших микрообъектов, не являющихся атомами или атомными ядрами (за исключением протона − ядра атома водорода). Пример античастиц: позитрон(античастица электрона). У частицы и античастицы массы, спины, времена жизни одинаковые, а прочие характеристики одинаковы по абсолютной величине, но противоположны по знаку.
Кварки − это частицы, из которых, по современным представлениям, построены крупные частицы (адроны). К настоящему времени достоверно установлено существование пяти разновидностей кварков u, c, d, s и b. Все кварки имеют спин 1/2, барионный заряд 1/3 и обладают дробным электрическим зарядом +2/3 или -1/3. Частицы, расположенные в верхней части таблицы имеют заряд +2/3, а в нижней − -1/3
. Протон состоит из двух u-кварков и одного d-кварка (р→uud), нейтрон состоит из одного u-кварка и двух d-кварков (n→ddu).
а). Электромагнитное взаимодействие.
Оно сводится к взаимодействию электрических зарядов (и магнитных моментов) частиц с электромагнитным полем
б). Гравитационное взаимодействие.
Оно доминирует в случае макроскопических масс. Но в мире элементарных частиц, ввиду малости их масс, это взаимодействие ничтожно.
в). Слабое взаимодействие. Слабое взаимодействие вызывает, например, β-распад радиоактивных ядер и, наряду с электромагнитными силами, объясняет поведение лептонов. Оно является короткодействующим, радиус действия порядка 10-16 см. Интенсивность слабого взаимодействия гораздо меньше интенсивности электромагнитного взаимодействия
г) Сильное (ядерное) взаимодействие. Сильное взаимодействие обеспечивает самую сильную связь элементарных частиц, в частности, связь между нуклонами в атомных ядрах. Оно присуще большинству элементарных частиц, так называемых адронов (протон, нейтрон, гипероны, мезоны и т.д.). Сильное взаимодействие - короткодействующее, радиус его действия порядка 10-13 см. Сильное взаимодействие не зависит от знака электрического заряда взаимодействующих частиц, т.е. обладает зарядовой независимостью.
Билет №26
2) Дифракция ренгеновских лучей на пространственной решетке. Формула Вульфа-Брегга. Исследование структуры кристаллов.
Обычные дифракционные решетки, у которых период имеет величину порядка длины световой волны, для наблюдения дифракции рентгеновских лучей неприемлемы, т.к. длины рентгеновских волн в 104 раз меньше световых волн. Пространственной дифракционной решеткой для рентгеновских лучей могут служить кристаллы, у которых расстояние между рассеивающими центрами с длиной волны рентгеновских лучей. В кристаллах атомы расположены упорядочено, образуя трехмерную решетку. Рентгеновские лучи возбуждают атомы кристаллической решетки, вызывая появление вторичных волн, которые интерферируют подобно вторичным волнам от щелей дифракционной решетки. Разбив кристалл на ряд параллельных плоскостей ,проходящих через узлы решетки, можно выделить в нем большое число параллельных атомных слоев.
Пусть падающий пучок рентгеновских лучей образует угол 0 с одной из систем таких плоскостей. Кристаллическую структуру можно рассматривать как объемную дифракционную решетку с периодом d. Разность хода лучей
А=2 d sinθ Условие максимума для междуатомной интерференции будет 2 d sinθ = kλ, где к = 1,2,3,.- причем разным к соответствуют разные углы скольжения 9. Для дифракции рентгеновских лучей в кристаллах выражение 2dsinθ=kλ называется формулой Вульфа-Брэгга. Изучая дифракцию рентгеновских лучей, можно по измеренным углам 9 для дифракционных максимумов и по известной длине волны монохроматического рентгеновского излучения исследовать внутреннюю структуру кристаллов.
3) Тепловое излучение. Абсолютно черное тело. Законы Кирхгофа, Стефана-Больцмана, Вина.
Тела, нагреты до достаточно высоких температур, светятся. Свечение тел, обусловленное нагреванием, называется тепловым излучением. Тепловое излучение является самым распространенным в природе, совершается за счет энерги теплового движения атомов и молекул в-ва (т.е. за счет его внутренней энергии) и свойственно всем телам при температуре выше 0 К. Тепловое излучение характеризуется сплошным спектром, положение максимума которого зависит от температуры. При высоких температурах излучаются короткие (видимые и ультрафиолетовые) электромагнитные волны, при низких – преимущественно длинные (инфракрасные). Тепловое излучение – практически единственный тип излучения, который может быть равновесным. Предположим, что нагретое тело помещено в полость, ограниченное идеально отражающей оболочкой. С течением времени, в р-тате непрерывного обмена энергией между телом и излучением, наступит равновесие, т.е. тело в единицу времени будет поглощать столько же сколько и излучать.
Испускательная и поглощательная способность. Спектральной хар-кой теплового излучения тела служит спектральная плотность энергетической светимости (испускательная
-- энергия электромагнитного излучения,
испускаемого за единицу времени с единицы площади поверхности тела в интервале частот от
Спектральная плотность энергетической светимости численно равна мощности излучения с единицы площади пов-ти этого тела в интервале частот единичной ширины. Единицей измерения является















