Классификация сварки (1016822), страница 6
Текст из файла (страница 6)
Наиболее важный элемент полуавтомата - механизм подачи проволоки. По способу подачи проволоки различают полуавтоматы трех типов: толкающего, тянущего и толкающе-тянущего (рис. 3.23). Наиболее распространены полуавтоматы толкающего типа Электродная проволока подается путем проталкивания ее через гибкий шланг (направляющий канал к держателю; устойчивая подача проволоки возможнаолько при достаточной ее жесткости (мягкая и тонкая проволока сминается). В полуавтоматах тянущего типа механизм размещен на держателе. В этом случае проволока протаскивается через гибкий шланг. Тянущая система обеспечивает устойчивую подачу мягкой и тонкой проволоки. Встречаются полуавтоматы с двумя синхронно работающими механизмами подачи. Один из них толкает, а другой протаскивает сварочную проволоку.
Рис. 3.23. Сварочные горелки для полуавтоматической сварки: а - для механизмов подачи толкающего типа; б - с встроеннымв рукоятку механизмом тянущего типа; в - с комбинрованным механизмом подачи толкающе-тянущего типа; 1 - шланг; 2 - рукоятка; 3 - кнопка управления; 4 - направляющая; 5 - сопло
Для сварки выпускают полуавтоматы, рассчитанные на номинальные токи 150-600 А для проволок диаметром 0,8-3,5 мм со скоростями подачи 1,0-0,17 м/мин. Полуавтоматы комплектуются источниками питания - выпрямителями с жесткой характеристикой.
3.2.7. Плазменная сварка
Плазменная сварка относится к дуговьм видам; при этом в качестве источника нагрева свариваемых заготовок используется сжатая дуга.
При обычной дуговой сварке дуга горит свободно между электродом и изделием. Однако если при помощи каких-либо приемов не дать дуге занять ее естественный объем, принудительно сжать ее, то температура дуги значительно повысится. В частности, можно ограничить диаметр столба дуги, пропустив ее через сопло малого диаметра. При этом плазмообразующий газ, вытекая через сопло горелки, сжимает дугу. Часть газа, проходя через столб дуги, нагревается, ионизируется и выходит из сопла в виде плазменной струи. Наружный слой, омывающий столб дуги, остается относительно холодным и создает электрическую и тепловую изоляцию между дугой и соплом, предохраняя его от разрушения.
П л а з м о й принято считать частично или полностью ионизированный газ, состоящий из нейтральных атомов и молекул, ионов и электронов. Типичное плазменное состояние вещества имеет место в электрическом газовом разряде. Плазма газового разряда в зависимости от состава среды характеризуется температурами от 2000 до 50000 °С.
Плазменные струи получают вплазменных горелках, которые называют акже плазмотронами. В промышленности находят применение главным образом дуговые плазменные горелки постоянного тока. Наиболее распространены способы получения плазменных струй путем интенсивного охлаждения газовым пото-ком столба дуги, горящей в сравнительно узком водоохлаждаемом канале плазменной горелки.
В инженерной практике используют две основные п р и н ц и -пиальные схемы дуговых плазменных горелок: прямого и косвенного действия.
Вгорелках прямого действия длясваркиплазменной дугой одним из электродов служит обрабатываемый материал (рис. 3.24, а). В этом случае используют два энергетических источника: плазменную струю и электрически активное пятно дуги. Внутренний КПД такой горелки, т.е. использование подведенной к ней электроэнергии, достигает 60-80 %.
В горелках косвенного действия для сварки плазменной струей (рис. 3.24, б, в) для снижения тепловой нагрузки на электроды применяют магнитное закручивание дуги. Максимальные значения внутреннего КПД таких горелок (при больших рас-
Первое упоминание о разработке плазменной сварки относится к 1950-м годам. В течение 1960-х годов были предложены несколько принципов формирования плазменно-газового потока, разработаны и внедрены оборудование и технология этого процесса в производство. В настоящее время постоянно осуществляется развитие, совершенствование плазменной сварки и поиск новых областей её при-менения как у нас в стране, так и за рубежом.
Р ис. 3.24. Принципиальные схемы дуговых плазменных горелок (плазмотронов) для получения:
а - плазменной дуги; б, в - плазменной струи; / - электрод; 2 - канал; З'-охлаждающая вода; 4 - столб дуги; 5 - сопло; 6 - плазменная струя; 7 -источник тока
ходах газа) достигают 50-70 %. Часть энергии дуги расходуется на нагрев электродов разряда, а также рассеивается в окружающее пространство вследствие лучистого и конвективного теплообмена.
Состав плазмообразующего газа (аргон, гелий, азот и пр.) выбирают в зависимости от требований, предъявляемых к процессу. Электроды изготавливают обычно из меди и вольфрама. Стенки камеры защищены от теплового оздействия дуги слоем сравнительно холодного газа.
Основными параметрами регулирования тепловых характеристик плазменной струи являются сила тока и длина дуги, а также расход плазмообразующего газа. Увеличение силы тока и длины дуги приводит к возрастаниютемпературы струи; с повышением расхода плазмообразующего газа при больших его значениях снижается среднемассовая температура струи.
Применение плазменной сварки. Исследования в области плазменных технологий как в нашей стране, так и за рубежом были направлены на решение проблем авиа- и ракетостроения, электроники, ядерной энергетики, криогенной техники. Основное внимание уделялось улучшению качества сварки изделий из алюминия коррозионно-стойких и жаропрочных сплавов и титана в большом диапазоне толщин, различных типов соединений. В конце 1960-х гг. сварка проникающей плазменной дугой переменного тока была применена в СССР в производстве алюминиевых топливных баков ракет. Аналогичная технология спустя 10 лет была внедрена в США взамен аргонодуговой сварки наружных алюминиевых баков на многоразовом космическом корабле «Шаттл». Этой технологии отводят большую роль и при строительстве космических станций. В 1989 г. НАСА (ЫА8А) выбрала технологию плазменной сварки для изготовления твердотопливных двигателей космической ракеты для доставки конструкций международной космической станции «Ргеес1от».
Преимущества плазменной сварки.
По равнению аргонодуговой плазменно-дуговая сваркаотли-чается более стабильным горением дуги. При этом обеспечивается более равномерное проплавление кромок.
По проплавляющей способности плазменная дуга занимает промежуточное положение между электронным лучом и дугой, горящей в аргоне.
Столб дуги и струя плазмы имеют цилиндрическую форму, поэтому площадь поверхности металла, через которую осуществляется теплопередача от струи к металлу, не зависит от расстояния меж-ду электродом горелки и изделием.
Благодаря цилиндрической форме столба дуги процесс плазменно-дуговой сварки менее чувствителен к изменению дпины дуги, чем аргонодуговая сварка. Изменение длины дуги конической формы (при аргонодуговой сварке) всегда ведет к изменению диаметра пятна нагрева, а следовательно, и к изменению ширины шва. Плазменная сварка позволяет иметь практически постоянный диа-метр пятна и дает возможность стабилизировать проплавление основного металла. Это свойство плазменной дуги с успехом ис-пользуется при сварке очень тонких листов.
Отдельно следует выделить сварку микроплазменной д у го й.
Микроплазменной дугой (сила тока 0,1-15 А) сваривают листы толщиной 0,025-0,8 мм из углеродистой и нержавеющей стали, меди, инконеля, хастеллоя, ковара, титана, тантала, молибдена, вольфрама, золота. Источники питания позволяют вести процесс в непрерывном и импульсном режимах.
По сравнению с аргонодуговой сваркой микроплазменная имеет следующие важные преимущества:
— изменение длины микроплазменной дуги оказывает значительно меньшее влияние на качество сварного соединения деталей малых толщин;
— дежурная плазменная дуга уверенно зажигается при силе тока менее 1 А;
— облегчается доступ к объекту сварки и улучшается зрительный обзор рабочего пространства (при ~ 15 А длина дуги достигает 10мм).
Наиболее часто встречающиеся типы соединений при микроплазменной сварке — соединения с отбортовкой.
Микроплазменная сварка находит широкое применение в радио-электронике и приборостроении для сварки тонких листов и фоль-ги. В авиационной промышленности с помощью микроплазменной сварки изготавливают детали толщиной 0,1-0,5 мм типа сильфонов, тонкостенных трубопроводов, деталей приборов из легированных сталей, алюминиевых сплавов, тугоплавких металлов. В последнее время микроплазменная сварка широко применяется в произ-водстве и ремонте деталей электроники и космонавтики, измерительных инструментов, часов, ювелирных изделий, металлических фильтров, термопар и тонкостенных трубок, зубопротезировании.
3.3. ЭЛЕКТРОШЛАКОВАЯ СВАРКА
Возникновение электрошлаковой сварки (ЭШС) было обусловлено потребностью автоматизировать процесс сварки под флюсом вертикальных швов. В ИЭС, разрабатывая способ получения вертикальных швов с принудительным формированием, обнаружили, что при глубине шлаковой ванны более 40 мм и её перегреве дуговой процесс становится неустойчивым и даже прекращается, однако при этом электродный металл, флюс и кромки свариваемых заготовок плавятся. В 1949 г. на основании этого эффекта была разработана ЭШС.
Электрошлаковая сварка - процесс образования неразъёмного соединения, при котором расплавление основного и присадочного металла осуществляется за счёт теплоты, выделяемой при прохождении электрического тока через расплавленный флюс. При этом слой расплавленного флюса служит защитой металла сварочной ванны от взаимодействия с кислородом и азотом воздуха. Схемы процесса и установка ЭШС приведены на рис. 3.25.
Шлаковая ванна образуется (наводится) путем расплавления флюса, заполняющего пространство между кромками основного металла и специальными охлаждаемыми водой приспособлениями — ползунами, плотно прижатыми к поверхности свариваемых деталей.
Флюс плавится дугой, возникающей в начальный период сварки между основным металлом и электродной проволокой. После расплавления определенного количества флюса дуга шунтируется расплавленным шлаком и гаснет. Длина шлаковой ванны практически равна толщине основного металла, а ширина определяется зазором между свариваемыми кромками. Глубину шлаковой ванны выбирают в зависимости от технологических условий (состава основного металла, режима сварки и др.).
Р ис. 3.25. Трёхэлектродная установка У112-ЕТ2-450 (а) и основные схемы процессов электрошлаковой сварки (б-ж):
б - сварка одним электродом металла толщиной до 60 мм; в – трёхфазная
сварка металла толщиной 450 мм тремя электродами с возвратно-поступа-тельным движением; г - многоэлектродная сварка металла практически неограниченной толщины; д - сварка пластинчатыми электродами; е - сварка плавящимся мундштуком; ж - контактно-шлаковая сварка стержней
Необходимая для осуществления шлакового процесса энергия получается от источника питания с жёсткой характеристикой переменного или постоянного тока, подсоединяемого к основному металлу и плавящемуся электроду (электродам), вводимому в зазор между свариваемыми кромками и погруженному в шлаковую ванну. Электрод располагают посередине шлаковой ванны или перемеща-ют в зазоре от одной поверхности свариваемых деталей к другой. Ток к электроду подводится при помощи мундштука. Проходя через шлаковую ванну, ток нагревает ее до температуры ~2000 °С, которая выше температуры плавления основного и электродного металлов.
Шлак расплавляет кромки основного металла и электрод, который подается в шлаковую ванну со скоростью, равной скорости его плавления. Расплавленные электродный и основной металлы стека-ют на дно шлаковой ванны, образуя сварочную (металлическую) ванну. По мере удаления источника нагрева происходит кристаллизация металла сварочной ванны. Расплавленный шлак, находящийся над металлической ванной, достаточно надежно защищает метапл от воздействия воздуха. По мере заполнения зазора между свариваемыми кромками мундштук при помощи специального привода передвигается вдоль свариваемого изделия.
Шлаковая ванна, наведенная в начале сварки, по мере формирования шва перемещается от его начала по детали к концу; при этом, соприкасаясь с охлаждёнными ползунами, образует на них тонкую шлаковую корку, исключая непосредственный контакт расплавленного металла с поверхностью ползуна.
Расход флюса при этом способе сварки невелик и не превышает 5 % массы наплавленного металла. Ввиду малого количества шлака легирование наплавленного металла происходит в основном за счёт электродной проволоки. При этом доля основного металла в сварном шве может быть снижена до 10-20 %.
По сравнению со сварочной дугой шлаковая ванна является ме-нее концентрированным источником теплоты, поэтому ЭШС харак-теризуется более медленным нагревом и охлаждением. Значительное время пребывания металла в расплавленном состоянии способствует улучшению условий удаления газов и неметаллических включений из металла шва.
Электрошлаковый процесс протекает устойчиво даже при плот-ностях токау' ~ 0,1 А/мм2 (при ручной дуговой сварке покрытыми электродами = 10-30 А/мм2; при автоматической под слоем флюса у = 200 А/мм2; при сварке плавящимся электродом в защитных газах 7 = 400 А/мм2), поэтому возможно использование электродов достаточно большого сечения.
Электрошлаковую сварку, как правило, ведут при вертикальном положении изделий. Зеркало сварочной ванны, как и при сварке в нижнем положении, расположено в горизонтальной плоскости, а перемещение расплавленного электродного и основного металлов происходит в направлении сил тяжести.
Обычно сварка начинается в прикреплённом к нижней части сты-ка металлическом кокиле длиной 50-100 мм, где возбуждается дуговой процесс. Для того чтобы вывести шлаковую ванну и предотвратить образование усадочных трещин и рыхлоты в конце шва, на изделии устанавливают выходные планки длиной около 100 мм (рис. 3.26).
Основные виды соединений, выполняемых электрошлаковой сваркой, приведены на рис. 3. 27.
Рис. 3.26. Начальные(1) и выходные (2) планки, применяемые при элект-рошлаковой сварке
