Популярные услуги

Главная » Лекции » Медицина » Токсикокинетика » Диффузия в физиологической среде

Диффузия в физиологической среде

2021-03-09СтудИзба

2. Диффузия в физиологической среде

Диффузия - процесс перемещения массы вещества в пространстве в соответствии с градиентом концентрации, осуществляемый вследствие хаотического движения молекул.

Диффузия веществ в воде описывается уравнением Фика:

Y = -Дp Описание: deltaC/Описание: delta l S Описание: deltat, где

Y - количество диффундирующего вещества;

Дp - коэффициент диффузии вещества в воде (для различных веществ можно найти в справочниках). С увеличением молекулярной массы вещества величина коэффициента диффузии, как правило, уменьшается;

Описание: deltaC/Описание: delta l - градиент концентраций вещества в различных участках среды;

S - площадь диффузионной поверхности.

Описание: deltat - время регистрации процесса.

Рекомендуемые материалы

Знак минус означает, что движение вещества осуществляется в направлении, по которому градиент концентрации отрицателен.

Из уравнения следует, что количество диффундировавшего вещества из одной среды в другую увеличивается при увеличении разности концентраций между средами, площади их соприкосновения, времени контакта и уменьшается при увеличении диффузионного расстояния (Описание: delta l).

При изучении диффузии газов между воздухом и тканями животных целесообразно соотносить скорость процесса с величиной парциального давления газов. Коэффициент диффузии в данном случае использовать очень сложно из-за трудностей, возникающих при определении концентрации вещества в тканях. Для того, чтобы преодолеть это препятствие вместо коэффициента диффузии в расчетах используют константу диффузии, численно равную количеству газа, в кубических сантиметрах, которое диффундирует за 1 мин через 1 см2 площади контакта при градиенте давления 1 атм на 1 см.

Физиологически значимые диффузионные процессы осуществляются на небольшие расстояния - от нескольких микрон до миллиметра. Дело в том, что время диффузии возрастает пропорционально квадрату пути, проходимому молекулой (для диффузии на расстояние 1 мкм потребуется время 10-2 с, для 1 мм - 100 с, для 10 мм - 10000 с, т.е. три часа). Поэтому распределение веществ в организме осуществляется путем конвекции, преодоление различного рода барьеров - путем диффузии.

Процесс диффузии веществ в биологических средах, таких как плазма крови, ликвор, внутри- и межклеточная жидкость имеет некоторые особенности. Компонентами биологических жидкостей, влияющими на процесс диффузии ксенобиотиков, являются как низкомолекулярные (K+, Na+, Ca2+, Cl-, HCO3-, H2PO4-, мочевина, аминокислоты и т.д.), так и высокомолекулярные вещества. К числу последних, например, в плазме крови относятся белки (альбумины, глобулины, фибриноген), липопротеины и т.д. Свободная диффузия ксенобиотиков значительно ограничивается упомянутыми веществами. Особенно сильно влияет на процессы распределения химическое взаимодействие токсикантов с компонентами биологических жидкостей (в основном белками - размер образующихся комплексов в 200 - 700 раз превосходят размеры свободных токсикантов) - связавшиеся вещества практически утрачивают способность проникать через биологические барьеры не только путем диффузии, но и фильтрации.


2.1. Проникновение веществ через биологические барьеры

На пути вещества, диффундирующего в организме, постоянно встречаются барьеры, а именно: эпителиальные, эндотелиальные структуры; клеточные, ядерные, митохондриальные мембраны и т.д.

Биологические мембраны представляют собой двойной слой молекул липидов, гидрофильные участки которых обращены в сторону водной фазы, а гидрофобные погружены внутрь мембраны. В липидный бислой встроены молекулы протеинов, которые и определяют тип мембраны, её физиологическую и морфологическую идентичность, свойства и, в том числе, проницаемость для химических веществ. Через биологические мембраны могут проходить жирорастворимые вещества, молекулы воды и лишь некоторые низкомолекулярные гидрофильные соединения.

Для объяснения этого феномена постулируется, что липидные мембраны имеют гидрофильные "поры" диаметром до 0,4 нм. В соответствии с жидкостно-мозаичной моделью Зингера и Николсона, эти "поры" представляют собой проницаемые точки неупорядоченной структуры мембраны (точки выпадения). С позиций теории упорядоченности белковых молекул в мембране, поры - ионные каналы, образуемые белками.

Так, постулировано, что отдельные протеины способны свободно диффундировать в липидном бислое, другие фиксированы в структуре цитоскелета. Большинство таких протеинов образуют в плоскости мембраны структуры, порой состоящие из нескольких субъединиц, обеспечивающие функциональный контакт клетки с окружающей средой. Примером таких структур являются ионные каналы, регулирующие проницаемость биомембран для ионов натрия, калия, кальция, хлора. Например, натриевый канал представляет собой крупный белковый комплекс, встроенный в липидную мембрану, состоящий из 4 гомологичных субъединиц, каждая из которых образован 8 различными белками. Такими же сложными структурами являются мембранные поры, через которые осуществляется транспорт других ионов и молекул.

Упрощенно любой биологический барьер, поскольку он формируется клеточными структурами, можно представить как липидную поверхность с определенным количеством пор (каналов) разного диаметра. В качестве гидрофильных каналов в сложных биологических барьерах выступают не только поры клеточных мембран, но и промежутки между клетками, которые также называются порами. Сравнение площадей непрерывного липидного слоя и суммарной поверхности пор показывает, какова относительная проницаемость конкретного биологического барьера для липофильных и гидрофильных веществ. Хотя такие представления являются более чем упрощенными, они позволяют объяснять поведение токсикантов внутри организма. На таблице 1 представлены характеристики различных биологических барьеров организма млекопитающих.

Таблица 1. Характеристики различных биологических барьеров

Тип барьера

Проницаемость для веществ

Примеры

Липидная мембрана

Хорошо растворимые в жирах, неионизированные молекулы

Слизистые полости рта, эпителий почечных канальцев, эпителий кожи, гемато-энцефалический барьер

Липидная мембрана с порами малого диаметра (0,3 - 0,8 нм)

Хорошо растворимые в жирах и низкомолекулярные водо-растворимые молекулы (до 200 Д)

Эпителий тонкой и толстой кишки

Липидная мембрана с порами средних размеров (0,8 - 4 нм)

Липофильные и в меньшей степени гидрофильные молекулы

Слизистые оболочки глаз, носоглотки, мочевого пузыря

Липидная мембрана с порами диаметром более 4 - 6 нм

Липофильные и гидрофильные молекулы с молекулярной массой

до 1000 Д

Легкие, стенка капилляров кожи, мышц, желчные капилляры

Липидная мембрана с пора большого диаметра

Липофильные и гидрофильные молекулы с большой молекулярной массой

(до 4000 Д)

Печеночные капилляры

Пористая мембрана

Гидрофильные молекулы с молекулярной массой до 50000 Д

Гломерулярный аппарат почек

Транспорт веществ через биологические барьеры порой чрезвычайно сложный процесс. Так, прохождение кальция через клеточные мембраны кардиомиоцитов осуществляется с помощью по крайней мере 7 механизмов. В таблице 2 приведены примеры механизмов проникновения химических веществ через биологические барьеры.

Таблица 2. Механизмы проникновения химических веществ через биологические барьеры

ПРОХОЖДЕНИЕ ЧЕРЕЗ:

МЕХАНИЗМЫ

ВЕЩЕСТВА

Липидные мембраны

Свободная диффузия в соответствии с градиентом концентрации

Жирорастворимые ксенобиотики

Ионные каналы ("поры" 0,3 - 0,4 нм)

Затрудненная диффузия в соответствии с градиентом концентрации

Гидрофильные молекулы малых размеров; ионы, селективно проникающие через ионные каналы

Транспортные белки; пермеазы; транслоказы

Активный транспорт против градиента концентрации с потреблением АТФ; каталитическая диффузия

Некоторые субстраты, сахара, органические кислоты и основания

Инвагинация мембран

Фагоцитоз; пиноцитоз; эндоцитоз рецепторных молекул

Большие молекулы, частицы, капли диаметром до 20 нм

Межклеточные поры

Затрудненная диффузия, избирательная фильтрация

Ионы; большие молекулы, нерастворимых в липидах веществ

Коннексоны

Контролируемая фильтрация

Ионы; аминокислоты; сахара; нуклеотиды (размеры до 2 нм)

2.2. Диффузия веществ через липидные мембраны

Исследования с использованием искусственных липидных мембран, сформированных из фосфатидилхолина (лецитина) свидетельствуют, что такие мембраны непроницаемы для заряженных ионов даже небольшого диаметра, например Na+, Cl-, но проницаемы для незаряженных жирорастворимых молекул (хлороформ, дихлорэтан, бутанол и т.д.). Причиной полного отсутствия проницаемости для ионов является высокое значение энергии, необходимой для переноса заряженной молекулы из водной среды в неполярную гидрофобную среду мембраны.

Многочисленные исследования проницаемости биологических барьеров для химических веществ (модель - эритроциты, эпителиальные слои и т.д.) показывают, что они ведут себя как липидные мембраны. Такие свойства обеспечивают разделение биологических сред, отграничение организма от окружающей среды. Высокая изолирующая способность липидных мембран имеет большое значение для нормального функционирования клеток и тканей. Так, для переноса ионов через возбудимые мембраны нейронов, миоцитов клетки должны располагать специфическими каналами, состояние которых регулируется с помощью электрических или химических механизмов.

Процесс проникновения жирорастворимых веществ через липидные мембраны можно рассматривать с позиций простой диффузии, выделив при этом три этапа:

1. Переход молекулы из водной фазы в гидрофобную фазу биологической мембраны;

2. Диффузия молекул в мембране;

3. Переход из липидной в водную фазу.

Поскольку диффузии в мембране описывается уравнением Фика, а переход молекулы из одной среды в другую определяется соотношением растворимости вещества в этих средах, проницаемость барьера должна зависеть от величины коэффициента диффузии, а также коэффициента распределения вещества в системе липиды/вода. Коэффициенты диффузии различных химических веществ варьируют в достаточно узких границах. Напротив, коэффициенты распределения в системе масло/вода различаются существенным образом. Это означает, что при сравнении проницаемости веществ значением коэффициента диффузии (Д) можно пренебречь, и тогда:

P = const Описание: betta, где

Р - коэффициент проницаемости барьера (мембраны) для вещества;

Описание: betta- коэффициент распределения вещества в системе липиды/вода.

Так как коэффициент проницаемости пропорционален коэффициенту распределения (абсорбции), скорость проникновения различных веществ через мембраны существенно различна: вещество тем легче проникает через клеточную мембрану, чем выше его растворимость в липидах. Однако неверно полагать, что между проницаемостью и растворимостью в липидах существует простая линейная связь. При достаточно высоких значения коэффициента Описание: bettaвещество накапливается в липидных мембранах и утрачивает способность покидать их. Таким образом, прослеживается следующая зависимость: с увеличением растворимости в липидах первоначально проницаемость барьера для веществ растет, но достигнув определенного уровня, вновь понижается.

2.3. Диффузия через поры

Проникновение через биологические барьеры веществ, растворимых преимущественно в воде, осуществляется путем диффузии через водные каналы (поры), а потому определяется размерами молекулы и практически не зависит от коэффициента распределения в системе масло/вода. Молекулы малого размера свободно проходят через поры. Если диаметр молекулы больше диаметра пор, она не проникает через мембрану. Кривая зависимости "проницаемость - размеры молекул" носит S-образный характер (рисунок 3).

Описание: http://www.medline.ru/public/monografy/toxicology/p4-toxicokinetics/img/t-p73.gif

Рисунок 3. Зависимость проницаемости биологических барьеров от размеров молекул водороастворимых веществ

Можно представить, что с увеличением размеров молекул их взаимодействие со стенками белковых каналов все в большей степени препятствует свободной диффузии. Так, радиус пор мембран эпителия желудочно-кишечного тракта составляет 0,3 - 0,8 нм. Химические вещества, поступающие в организм per os, и имеющие молекулярную массу менее 400 Д, могут проходить через эпителий кишечника, но лишь при условии, что молекулы имеют цилиндрическую форму. Для молекул шарообразной формы, граница проницаемости через эпителий желудочно-кишечного тракта - 150 - 200 Д.

В целом диффузия водо-растворимых веществ через барьеры также описывается уравнением Фика, однако, в качестве диффузионной поверхности следует учитывать только эффективную интегральную площадь пор.

Проницаемость биологических барьеров для электролитов еще более затруднена. Поры биологических мембран плохо проницаемы (а порой и непроницаемы вовсе) для заряженных молекул, причем величина заряда имеет большее значение, чем их размеры. Отчасти это обусловлено взаимодействием (притяжением или отталкиванием) ионов с зарядами белковой стенки каналов, отчасти их гидратацией в водной среде. Степень гидратации тем выше, чем выше заряд. Размеры гидратированного иона значительны, что затрудняет его диффузию. В этой связи проницаемость мембран для двухвалентных ионов всегда ниже, чем для одновалентных, а трехвалентные практически на способны преодолевать биологические барьеры.

Слабые органические кислоты и основания способны к реакции диссоциации, т.е. образованию ионов, в водной среде. Причем недиссоциированные и, следовательно, незаряженные молекулы таких веществ проникают через липидные мембраны и поры в соответствии с величиной коэффициента распределения в системе масло/вода, диссоциировавшие же молекулы через липидный бислой и поры не диффундируют. Для проницаемости подобных веществ большое значение имеет величина их рКа, определяющая, какая часть растворенного вещества будет находиться в ионизированной и неионизированной форме при данных значениях рН среды. рКа представляет собой отрицательный логарифм константы диссоциации слабых кислот и оснований, и численно равна рН, при котором 50% вещества находится в ионизированной форме. Степень диссоциации вещества может быть рассчитана по формулам:

Log(неиониз.форма)/(ионизир.форма) = рКа - рН (для слабых кислот)

Log(ионизир.форма)/(неиониз.форма) = рКа - рН (для слабых оснований)

Кислая среда способствует превращению слабых кислот (RCOOH Описание: two-headed arrowRCOO- + Н+) в неионизированную форму, и наоборот, щелочная (рН больше рКа) - в ионизированную. Для слабых оснований (RNH2 + H+ Описание: two-headed arrowRNH3+) справедлива обратная зависимость: уменьшение рН (увеличение концентрации водородных ионов в среде) способствует превращению веществ в ионизированную форму.

Различия в значениях рН по обе стороны биологической мембраны существенно влияют на процессы резорбции, являются причиной неравномерного распределения веществ в организме. Значения рН плазмы крови и различных тканей не одинаковы (таблица 3).

Таблица 3. Значения рН различных жидкостей организма человека

Орган или жидкость

значение рН

Кровь
Слюна
Желудочный сок
Панкреатический сок
Двенадцатиперстная кишка
Тонкая кишка
Молоко
Моча
Пот
Ликвор
Мышечная ткань
Связки
Почки
Протоплазма клеток

7,36
5,4 - 6,7
1,3 - 1,8
8,3
7,0 - 7,8
6,2 - 7,3
6,4 - 6,7
4,8 - 7,4
4,0 - 8,0
7,5
6,7 - 6,8
7,2
6,6 - 6,9
6,4 - 7,0

2.4. Межклеточный транспорт химических веществ

Через специальные каналы, так называемые коннексоны, возможен обмен между контактирующими друг с другом клетками веществами с молекулярной массой до 1000 дальтон (ионами, аминокислотами, сахарами, нуклеотидами). Коннексоны представляют собой белковые образования, состоящие из 6 субъединиц в каждой из контактирующих мембран. Диаметр поры коннексона в зависимости от концентрации Ca2+ в окружающей среде изменяется в интервале от 0 до 2 нм. Через коннексоны возможно проникновение в клетку и токсических веществ. В настоящее время коннексоны обнаружены во всех тканях организма млекопитающих и человека за исключением мышечной и нервной.

2.5. Диффузия растворенных газов

Благодаря малым размерам молекул, газы в биологических средах диффундируют с относительно высокой скоростью. Они хорошо проникают из окружающей среды в кровь, а затем из крови в ткани. Это справедливо не только для веществ, участвующих в процессе дыхания (кислород, диоксид углерода), но и для подавляющего большинства газообразных токсикантов.

Количество газа, растворенного в жидкости, определяется:

1. Величиной его парциального давления в газовой смеси над жидкостью;

2. Свойствами жидкости;

3. Температурой.

Количество газа (объем), растворяющегося в единице объема жидкости при стандартных условиях и значении его парциального давления 1 атм, характеризуется коэффициентом поглощения (абсорбции) Бунзена (Описание: http://www.medline.ru/public/monografy/toxicology/p4-toxicokinetics/sym/alpha.gif ). С повышением температуры Описание: http://www.medline.ru/public/monografy/toxicology/p4-toxicokinetics/sym/alpha.gifпонижается. Понижение значения коэффициента Бунзена отмечается также при повышении ионной силы раствора (все биологические жидкости в сравнении с водой).

Поскольку величина коэффициента диффузии для различных газов практически одинакова, их накопление в тканях, определяется парциальным давлением и растворимостью в биологических жидкостях. В таблице 4 представлены значения коэффициентов Описание: http://www.medline.ru/public/monografy/toxicology/p4-toxicokinetics/sym/alpha.gifдля некоторых газов. Обращает на себя внимание высокая растворимость аммиака и низкая таких газов, как кислород, азот и т.д. В целом прослеживается следующая закономерность - чем лучше растворяется газ в воде, тем большая его часть, при ингаляции, связывается верхними дыхательными путями, легочной тканью, и тем меньшая проникает во внутренние среды организма. В этой связи аммиак, при ингаляции, будет оказывать преимущественно местное действие на верхние отделы дыхательных путей, сероводород - не только местное раздражающее, но и резорбтивное действие, оксид углерода - только системное действие.

Лекция "5 Вывод уравнения движения самописца" также может быть Вам полезна.

Таблица 4. Коэффициенты поглощения Бунзена для ряда газов в воде (20оС)

ГАЗ

Описание: http://www.medline.ru/public/monografy/toxicology/p4-toxicokinetics/sym/alpha.gif20

Азот
Водород
Оксид углерода
Кислород
Этилен
Оксид азота
Диоксид углерода
Ацетилен
Сероводород
Аммиак

0,015
0,018
0,023
0,031
0,122
0,629
0,879
1,030
2,583
702,0

Биологически значимы различия в абсорбционной способности СО2 и О2. При физиологических условиях ткани лучше отдают диоксид углерода, чем поглощают кислород. В этой связи обмен веществ в клетках в значительно большей степени лимитирован скоростью проникновения в ткани О2, чем высвобождением ими СО2. Различия в способности этих газов растворяться в жидкостях, важны и при формировании токсического отека легких, вызванного ингаляцией некоторых токсикантов, например хлора или фосгена. При накоплении отечной жидкости в альвеолах увеличивается толщина барьера, отделяющего кровь от воздуха. Вследствие существенных различий в способности кислорода и диоксида углерода растворяться в жидкостях, для О2 отечная жидкость, инфильтрирующая альвеолярно-капиллярный барьер, представляет плохо преодолеваемую преграду, для СО2 - нет. В результате, на фоне токсического отека легких развивается гипоксия при нормальном содержании (или даже пониженном) СО2. Поскольку углекислый газ является стимулятором дыхательного центра, его недостаток в крови усугубляет и без того тяжелое состояние отравленного. Методом повышения содержания О2 в крови является увеличение его парциального давления во вдыхаемом воздухе.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5137
Авторов
на СтудИзбе
440
Средний доход
с одного платного файла
Обучение Подробнее