Популярные услуги

Курсовой проект по деталям машин под ключ
Все лабораторные под ключ! КМ-1. Комбинационные логические схемы + КМ-2. Комбинационные функциональные узлы и устройства + КМ-3. Проектирование схем
ДЗ по ТММ в бауманке
КМ-3. Типовое задание к теме прямые измерения. Контрольная работа (ИЗ1) - любой вариант!
Любая лабораторная в течение 3 суток! КМ-1. Комбинационные логические схемы / КМ-2. Комбинационные функциональные узлы и устройства / КМ-3. Проектирование схем
КМ-2. Выпрямители. Письменная работа (Электроника семинары)
Допуски и посадки и Сборочная размерная цепь + Подетальная размерная цепь
КМ-3. Задание по Matlab/Scilab. Контрольная работа - любой вариант за 3 суток!
ДЗ по матведу любого варианта за 7 суток
Задача по гидравлике/МЖГ

Сообщения и сигналы

2021-03-09СтудИзба

2 Сообщения и сигналы

В разделе даны понятия о сообщениях и сигналах электросвязи: рассматриваются первичный телефонный сигнал, сигналы звукового вещания, факсимильные сигналы, телеграфные сигналы и сигналы передачи данных. Приводятся выражения средней мощности сообщений, пиковой мощности, динамического диапазона, скорости модуляции и скорости передачи информации.

2.1 Информация, сообщения, сигналы

Информация – это сведения, являющиеся объектом передачи, распределения, преобразования, хранения или непосредственного использования. Сообщение является формой представления информации.

Количество информации в отдельно взятом сообщении определяется величиной, обратной вероятности появления сообщения, вычисленной в логарифмических единицах:

                                                   ,                                             (2.1.1)

где р(а) – вероятность сообщения а,

           k – основание логарифма.

При р(а)=1 количество информации равно нулю, то есть сообщение об известном событии никакой информации не несет.

Основание логарифма чаще всего принимают равным двум (k=2), и тогда количество информации, содержащейся в сообщении, выражается в двоичных единицах:

Рекомендуемые материалы

                                                                ,                                                      (2.1.2)

Двоичную единицу обычно называют битом – от binary digit (двоичная цифра).

Совокупность всех возможных сообщений и вероятностей их появления образует ансамбль сообщений. Если ансамбль состоит всего из двух сообщений а1 и а2 (например, вида «да» и «нет» или 0 и 1), которые являются независимыми и равновероятными, то есть р(а1)= р(а2) – 1/2, то каждое из сообщений несет одну двоичную единицу (один бит) информации:

                                    ,                         (2.1.3)

Рисунок 2.1.1 – Принцип передачи сообщений

Различают четыре вида сигналов: непрерывный сигнал непрерывного времени (рисунок 2.1.2, а), непрерывный дискретного времени (рисунок 2.1.2, б), дискретный непрерывного времени (рисунок 2.1.2, в) и дискретный дискретного времени (рисунок 2.1.2, г).

а)

б)

в)

г)

Рисунок 2.1.2 – Непрерывный сигнал  непрерывного времени (а), непрерывный сигнал дискретного времени (б), дискретный  сигнал непрерывного времени (в), дискретный  сигнал дискретного времени (г).

Все сигналы могут быть подразделены на периодические, значения которых повторяются через определённые промежутки времени, и непериодические. Простейшим периодическим сигналом является гармоническое колебание.

S(t) = A∙Sin(ω∙t),

где A, ω – амплитуда и угловая частота колебания.

Любой периодический сигнал состоит из гармоник. Значение амплитуд (Аk),частот (ωk) и начальных фаз (φk) которых можно найти, посредством разложения в ряд Фурье:

Если изобразить амплитуду Аk и фазу φk каждой гармоники на рисунке, то получим спектральные диаграммы. Распределение амплитуд Аk гармоник по частоте называется спектром амплитуд сигнала, а распределение фаз φk – спектром фаз. На рисунке 2.1.3 изображены временное и спектральное представления электрических сигналов.

 Рисунок 2.1.3 – Временное и спектральное представления электрических сигналов

Непериодический сигнал легко получить из периодического, увеличивая период вплоть до бесконечности (на рисунке 2.1.4 показано последовательное двукратное увеличение периода). Спектральные диаграммы, соответствующие каждому периоду приведены на рисунке 2.1.5.

Рисунок 2.1.4 – Увеличение периода последовательности прямоугольных импульсов

Рисунок 2.1.5 – Переход к спектральной плотности одиночного прямоугольного импульса

При увеличении периода сигнала частота первой гармоники понижается и спектральные линии становятся гуще. Амплитуды гармоник уменьшаются, так как энергия сигнала перераспределяется между возросшим числом гармоник. Понятие спектра амплитуд заменяется понятием спектральной плотности амплитуд (аналогично возникает понятие спектральной плотности фаз), которая указывает на удельный вес бесконечно малой амплитуды синусоидального колебания в любой бесконечно узкой полосе частот (рисунок 2.1.5). Таким образом, спектр непериодического сигнала является в общем случае не дискретным, а непрерывным.

2.2 Сигналы электросвязи. Ширина полосы частот сигнала.

Практически все электрические сигналы, отображающие реальные сообщения содержат бесконечный спектр частот. Для неискажённой передачи таких сигналов потребовался бы канал с бесконечной полосой пропускания. С другой стороны, потеря на приёме хотя бы одной составляющей спектра приводит к искажению временной формы сигнала. Поэтому ставится задача передавать сигнал в ограниченной полосе пропускания канала таким образом, чтобы искажения сигнала удовлетворяли требованиям и качеству передачи информации. Таким образом, полоса частот – это ограниченный (исходя из технико-экономический соображений и требований к качеству передачи) спектр сигнала.

Ширина полосы частот ΔF определяется разностью между верхней FВ и нижней FН частотами в спектре сообщения, с учётом его ограничения. Так, для периодической последовательности прямоугольных импульсов полоса сигнала ориентировочно может быть найдена из выражения:

,

где tn – длительность импульса.

Первичный телефонный сигнал (речевое сообщение), называемый также абонентским, является нестационарным случайным процессом с полосой частот от 80 до 12 000 Гц. Разборчивость речи определяется формантами (усиленные области спектра частот), большинство которых расположено в полосе 300 … 3400 Гц. Поэтому по рекомендации Международного консультативного комитета по телефонии и телеграфии (МККТТ) для телефонной передачи принята эффективно передаваемая полоса частот 300 … 3400 Гц. Такой сигнал называется сигналом тональной частоты (ТЧ). При этом качество передаваемых сигналов получается достаточно высоким – слоговая разборчивость составляет около 90%, а разборчивость фраз – 99%.

Сигналы звукового вещания. Источниками звука при передаче программ вещания являются музыкальные инструменты или голос человека. Спектр звукового сигнала занимает полосу частот 20…20000 Гц. Для достаточно высокого качества (каналы вещания первого класса) полоса частот ∆FC должна составлять 50…10000 Гц, для безукоризненного воспроизводства программ вещания (каналы высшего класса) – 30…15000 Гц., второго класса – 100…6800 Гц.

В вещательном телевидении принят метод поочередного преобразования каждого элемента изображения в электрический сигнал с последующей передачей этого сигнала по одному каналу связи. Для реализации такого принципа на передающей стороне применяются специальные электронно-лучевые трубки, преобразующие оптическое изображение передаваемого объекта в развернутый во времени электрический видеосигнал.

Рисунок 2.2.1 – Конструкция передающей трубки

В качестве примера на рисунке 2.2.1 представлен в упрощенном виде один из вариантов передающей трубки. Внутри стеклянной колбы, находящейся под высоким вакуумом, расположены полупрозрачный фотокатод (мишень) и электронный прожектор (ЭП). Снаружи на горловину трубки надета отклоняющая система (ОС). Прожектор формирует тонкий электронный луч, который под воздействием ускоряющего поля направляется к мишени. При помощи отклоняющей системы луч перемещается слева направо (по строкам) и сверху вниз (по кадру), обегая всю поверхность мишени. Совокупность всех (N) строк называется растром. На мишень трубки, покрытую светочувствительным слоем, проецируется изображение. В результате каждый элементарный участок мишени приобретает электрический заряд. Образуется так называемый потенциальный рельеф. Электронный луч, взаимодействуя с каждым участком (точкой) потенциального рельефа, как бы стирает (нейтрализует) ее потенциал. Ток, который течет через сопротивление нагрузки Rн, будет зависеть от освещенности участка мишени, на который попадает электронный луч, и на нагрузке выделится видеосигнал Uс (рисунок 2.2.2). Напряжение видеосигнала будет изменяться от уровня «черного», соответствующего наиболее темным участкам передаваемого изображения, до уровня «белого», соответствующего наиболее светлым участкам изображения.

Рисунок 2.2.2 – Форма телевизионного сигнала на временном интервале, где отсутствуют кадровые импульсы.

Если уровню «белого» будет соответствовать минимальное значение сигнала, а уровню «черного» – максимальное, то видеосигнал будет негативным (негативной полярности). Характер видеосигнала зависит от конструкции и принципа действия передающей трубки.

Телевизионный сигнал является импульсным однополярным (так как он является функцией яркости, которая не может быть разнополярной) сигналом. Он имеет сложную форму, и его можно представить в виде суммы постоянной и гармонических составляющих колебаний различных частот.
Уровень постоянной составляющей характеризует среднюю яркость передаваемого изображения. При передаче подвижных изображений величина постоянной составляющей будет непрерывно меняться в соответствии с освещенностью. Эти изменения происходят с очень низкими частотами (0-3 Гц). С помощью нижних частот спектра видеосигнала воспроизводятся крупные детали изображения.

Телевидение, равно как и световое кино, стало возможным благодаря инерционности зрения. Нервные окончания сетчатки глаза продолжают ещё какое-то время оставаться возбуждёнными после прекращения действия светового раздражителя. При частоте смены кадров Fк ≥ 50 Гц глаз не замечает прерывистости смены изображения. В телевидении время считывания всех N строк (время кадра – Tк) выбирается равным Tк =  с. С целью уменьшения мерцания изображения используется чересстрочная развертка. Вначале за время полукадра, равное Тп/к =  =  с, считываются поочередно все нечетные строки, затем, за такое же время – все четные строки. Частота спектра видеосигнала получится при передаче изображения, представляющего собой сочетание светлой и темной половины растра (рисунок 2.2.4). Сигнал  представляет собой импульсы близкие по форме к прямоугольной. Минимальная частота этого сигнала при чересстрочной развертке частоте полей, т.е.

Рисунок 2.2.3 – К определению минимальной частоты спектра частот телевизионного сигнала

С помощью верхних частот передаются наиболее мелкие детали изображения. Такое изображение можно представить в виде чередующихся по яркости мелких черных и белых квадратов со сторонами, равными диаметру луча (рисунок 2.2.4, а), расположенными вдоль строки. Такое изображение будет содержать максимальное количество элементов изображения.

Рисунок 2.2.4 – К определению максимальной частоты видеосигнала

Стандарт предусматривает разложение изображения в кадре на N = 625 строк. Время прочерчивания одной строки (рис. 2.2.4, б) будет равно . Меняющийся по строке сигнал получится когда чередуются чёрные и белые квадратики. Минимальный период сигнала будет равен времени считывания пары квадратов: ,

где nпар – число пар квадратов в строке.

Число квадратов (n) в строке будет равно:

,

где  ­– формат кадра (смотри рисунок 2.2.4, а),

  b – ширина, h – высота поля кадра.

Тогда ;

Формат кадра принимается равным к=4/3. Тогда верхняя частота сигнала Fв будет равна:

При передаче 25 кадров в секунду с 625 строками в каждом номинальное значение частоты разложения по строкам (частота строк) равно 15.625 кГц. Верхняя частота телевизионного сигнала будет равна 6.5 МГц.

Согласно принятому в нашей стране стандарту напряжение полного видеосигнала UТВ, состоящего из импульсов синхронизации UC, сигнала яркости и гасящих импульсов UP составляет UТВ  = UP  + UC =1В. При этом UC = 0.3 UТВ, а UP =0.7 UТВ. Как видно из рисунка 2.2.5 сигнал звукового сопровождения располагается выше по спектру (fнЗВ = 8 МГц) видеосигнала. Обычно сигнал видео передаётся посредством амплитудной модуляции (АМ), а сигнал звука – частотной (ЧМ).

Иногда, в целях экономии полосы канала верхняя частота видеосигнала ограничивается значением Fв = 6.0 МГц, а несущая звука передаётся на частоте fнзв = 6.5 МГц.

Рисунок 2.2.5 – Размещение спектров сигналов изображения и звука в канале телевизионного вещания.

Факсимильные сигналы. Факсимильная (фототелеграфная) связь – это передача неподвижных изображений (рисунков, чертежей, фотографий, текстов, газетных полос и так далее). Устройство преобразования факсимильного сообщения (изображения) преобразовывает световой поток, отражаемый от изображения, в электрический сигнал (Рисунок 2.2.6)

Рисунок 2.2.6 Функциональная схема факсимильной связи

Где 1 – канал факсимильной связи; 2 – привод, синхронизирующие и фазирующие устройства; 3 – передающий барабан, на который помещается оригинал передаваемого изображения на бумажном носителе; ФЭП – фотоэлектронный преобразователь отражённого светового потока в электрический сигнал; ОС – оптическая система для формирования светового луча.

При передаче чередующихся по яркости элементов сигнал приобретает вид импульсной последовательности. Частоту следования импульсов в последовательности называют частотой рисунка. Максимального значения частота рисунка, Гц, достигает при передаче изображения, элементы и разделяющие их промежутки которого равны размерам развертывающего луча:

                                                                        Fрисmax = 1/(2τu),                                                (2.2.1)

где τu – длительность импульса, с, равная длительности передачи элемента изображения, которую можно определить через параметры развертывающего устройства.

Так, если π·D – длина строки, а S – шаг развертки (диаметр развертывающего луча), то в строке  π·D/S элементов. При  N оборотах в минуту барабана, имеющего диаметр D, время передачи элемента изображения, измеряемое в секундах:

                                           ,                                 (2.2.2)

Минимальная частота рисунка (при изменении по строке), Гц, будет при развертке изображения, содержащего по длине строки черную и белую полосы, равные по ширине половине длины строки. При этом:

                                                                         Fpuс min = N/60,                                                 (2.2.3)

Для выполнения удовлетворительной по качеству фототелеграфной связи достаточно передавать частоты от  Fрис min до Fрис max. Международный консультативный комитет по телеграфии и телефонии рекомендует для факсимильных аппаратов N = 120, 90 и 60 об/мин; S = 0.15 мм; D = 70 мм. Из (2.2.2) и (2.2.3) следует, что при N = 120  Fрис max = 1466 Гц;  Fрис min = 2 Гц;  при N =60 Fрис max = 733 Гц;  Fрис min = 1 Гц; Динамический диапазон факсимильного сигнала составляет 25 дБ [1].

Телеграфные сигналы и сигналы передачи данных. Сообщения и сигналы телеграфии и передачи данных относятся к дискретным.

Устройства преобразования телеграфных сообщений и данных представляют каждый знак сообщения (букву, цифру) в виде определённой комбинации импульсов и пауз одинаковой длительности. Импульс соответствует наличию тока на выходе устройства преобразования, пауза – отсутствию тока.

 Для передачи данных используют более сложные коды, которые позволяют обнаруживать и исправлять ошибки в принятой комбинации импульсов, возникающие от действия помех.

Устройства преобразования сигналов телеграфии и передачи данных в сообщения по принятым комбинациям импульсов и пауз восстанавливают в соответствии с таблицей кода знаки сообщения и выдают их на печатающее устройство или экран дисплея.

Чем меньше длительность импульсов, отображающих сообщения, тем больше их будет передано в единицу времени. Величина, обратная длительности импульса, называется скоростью телеграфирования: В = 1/τи, где τи – длительность импульса, с. Единицу скорости телеграфирования назвали бодом. При длительности импульса τи = 1 с скорость В = 1 Бод. В телеграфии используются импульсы длительностью 0.02 с, что соответствует стандартной скорости телеграфирования 50 Бод. Скорости передачи данных существенно выше (200, 600, 1200 Бод и более).

Сигналы телеграфии и передачи данных обычно имеют вид последовательностей прямоугольных импульсов (рисунок 2.1.4, а).

При передаче двоичных сигналов достаточно зафиксировать только знак импульса при двуполярном сигнале либо наличие или отсутствие – при однополярном сигнале. Импульсы можно уверенно зафиксировать, если для их передачи используется ширина полосы частот, численно равная скорости передачи в бодах. Для стандартной скорости телеграфирования 50 Бод ширина спектра телеграфного сигнала составит 50 Гц. При скорости 2400 Бод (среднескоростная система передачи данных) ширина спектра сигнала равна примерно 2400 Гц.

Средняя мощность сообщений РСР определяется путем усреднения результатов измерений за большой промежуток времени.

Средняя мощность, которую развивает случайный сигнал s(t) на резисторе сопротивлением 1 Ом:

Мощность, заключённую в конечной полосе частот между ω1 и ω2, определяют интегрированием функции G(ω) в соответствующих пределах:

Функция G(ω) представляет собой спектральную плотность средней мощности процесса, то есть мощность, заключённую в бесконечно малой полосе частот.

Для удобства расчетов мощность обычно дается в относительных единицах, выраженных в логарифмической форме (децибелах, дБ). В этом случае уровень мощности:

                                                             ,                                                   (2.2.4)

Если эталонная мощность РЭ=1 мВт, то рх  называют абсолютным уровнем и выражают в дБм. С учетом этого абсолютный уровень средней мощности:

                                                        ,                                             (2.2.5)

Пиковая мощность рпик  (ε %) – это такое значение мощности сообщения, которое может превышаться в течение ε  % времени.

                                                ,                                     (2.2.6)

Пик-фактор сигнала определяется отношением пиковой мощности к средней мощности сообщения, дБ,

                                                  ,                                       (2.2.7)

Из последнего выражения, поделив числитель и знаменатель на РЭ, с учетом (2.2.4) и (2.2.6) определим пик-фактор как разность абсолютных уровней пиковой и средней мощностей:

                                                      ,                                            (2.2.8)

Под динамическим диапазоном D (ε%) понимают отношение пиковой мощности к минимальной мощности сообщения Рmin. Динамический диапазон, как и пик-фактор, принято оценивать в дБ:

                                   ,               (2.2.9)

Средняя мощность сигнала тональной частоты, измеренная в час наибольшей нагрузки (ЧНН), с учётом сигналов управления – набора номера, вызова и так далее – составляет 32 мкВт, что соответствует уровню (по сравнению с 1 мВт) pср = –15 дБм

Максимальная мощность телефонного сигнала, вероятность превышения которой мала, равна 2220 мкВт (что соответствует уровню +3.5 дБм); минимальная мощность сигнала, который еще слышен на фоне шумов, принята равной 220000 пВт (1 пВт  = 10-12  мВт), что соответствует уровню  – 36. 5 дБм.

Средняя мощность РСР сигнала вещания (измеренная в точке с нулевым относительным уровнем) зависит от интервала усреднения и равна 923 мкВт при усреднении за час, 2230 мкВт – за минуту и 4500 мкВт – за секунду. Максимальная мощность сигнала вещания 8000 мкВт.

Динамический диапазон DC сигналов вещания составляет для речи диктора 25…35 дБ, для инструментального ансамбля 40…50 дБ, для симфонического оркестра до 65 дБ.

В соответствии с рекомендацией МККТТ мощность допустимых помех не должна превышать РП = 4000 пВт.

Первичные дискретные сигналы обычно имеют вид прямоугольных импульсов постоянного или переменного тока, как правило, с двумя разрешёнными состояниями (двоичные или двухпозиционные).

Скорость модуляции определяется количеством единичных элементов (элементарных посылок), передаваемых в единицу времени, и измеряется в бодах:

                                                                       В = 1/τи ,                                                          (2.2.10)

В лекции "25 Понятие закона" также много полезной информации.

где τи – длительность элементарной посылки.

Скорость передачи информации определяется количеством информации, передаваемой в единицу времени, и измеряется в бит/с:

                                                             ,                                                (2.2.11)

где М – число позиций сигнала.

В двоичных системах (М=2) каждый элемент несет 1 бит информации, поэтому согласно (2.1.10) и (2.2.11):

Сmax =В,  бит/с

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5184
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее