Технология mems
3 Технология mems
В результате почти глобальными и принципиальными тенденциями изменения облика современных СУ, используемых на объектах аэрокосмической техники, стала миниатюризация и сохранение функциональности.
Аэрокосмические применения - область, где малые габариты и масса являются одним из решающих аргументов в пользу приборов на основе микросистемной техники (смотри рис. 3.1). Именно для этой области еще в конце 60-ых годов разработаны и освоены первые миниатюрные кремниевые датчики давления и акселерометры. Датчики отличаются высокими динамическими характеристиками (собственные частоты датчиков давления - до 500 кГц), наименьший диаметр датчика - до 0,4 мм, датчики обладают высокой устойчивостью к вибрациям и ударам. Разработаны и применяются в аэродинамических исследованиях кремниевые зонды термоанемометры, датчики касательного трения [5]. Дальнейшим шагом развития является разработка многоэлементных (кластерных) массивов датчиков, выполнение «кластеров» на гибком носителе, обеспечивающем установку непосредственно на обтекаемую поверхность.
|
Рис. 3.1 Применение микросистемной техники в авиации и космосе |
В целях повышения надежности авиационных двигателей ведется разработка датчиков, работоспособных в сложных условиях (при высоких температурах, уровне вибрации и т.п.). Вышли на уровень летных испытаний исследования по активному управлению потоком с использованием MEMS.
Создание летательных микроаппаратов (ЛМА) авиационного и космического назначения ведется целым рядом организаций в США, европейских странах, в Японии и Китае. Создаются ЛМА для освещения тактической обстановки. Планируется выводить на орбиты малые (до 500кг), микро- (до 100кг) нано- (до 10кг), и пико (до 1кг) космические аппараты различного назначения. Их стремятся сделать дешевыми, маленькими и легкими (принципиальная экономия на стоимости выведения – выводятся попутно с большими ИСЗ). А значит, классическую систему управления движением центра масс и вокруг центра масс в таком ИСЗ не разместить. Значит новые измерители, новые принципы организации работы системы управления и т.д.
Большая часть этих разработок базируется на использовании достижений микросистемной техники с использованием MEMS.
3.1 Определения и сегодняшнее положение дел
На сегодняшний день одной из инновационных технологий является технология микроэлектромеханических систем - MEMS (Micro-Electro-Mechanical Systems).
Определение: Под технологией MEMS понимают технологию микрообработки, позволяющую изготавливать кремниевые микросхемы с крошечными механическими элементами – интеллектуальными машинами с самыми различными функциями.
Рекомендуемые материалы
Определение: Соответственно MEMS – это объединение механических элементов, датчиков, приводов и электроники на одном кремниевом основание (подложке).
Мировой рынок MEMS является очень динамичным и согласно последним прогнозам растет на 13,2% каждый год. Кстати, эту отрасль индустрии в Японии называют микромашинами (Micromachines), а в Европе - микросистемными технологиями (Micro System Technology).
Фундаментальные и поисковые исследования, проводимые в США, Японии, странах Европы и Юго-Восточной Азии, успешно сочетаются с разработками и производством MEMS и объектов вооружения и военной техники на их основе. При этом одновременно решаются вопросы унификации, стандартизации изделий MEMS для эффективного использования в разрабатываемой аппаратуре нового поколения.
Начиная с 2001 г. в России развернуты работы по данному направлению, в частности были открыты свыше 100 НИОКР в области исследований и разработке MEMS. В настоящее время акцент в проведении работ по тематике с фундаментальной и поисковой направленности в прикладную [7].
Все элементы микроэлектромеханических систем могут быть реализованы в виде единого изделия, причем сразу десятками или сотнями, как микросхемы на кремниевой пластине, в основе этого лежит апробированная традиционная технология производства полупроводниковых интегральных микросхем.
3.2 Историческая справка
В истории развития MEMS-технологии, по мнению ведущих современных специалистов, можно выделить четыре уже пройденных этапа [8]. На первом непродолжительном этапе - исследовательском (с середины 50-х до начала 60-х годов прошлого столетия) основные усилия к формированию облика будущей технологии приложили как научные подразделения крупных компаний (в первую очередь знаменитая Bell Laboratories), так и собственно промышленные компании и академическая наука. Специфика этого периода заключается в том, что главное внимание уделялось востребованным во времена холодной войны технологиям двойного назначения, прежде всего созданию точных и дешевых датчиков различных типов (проектирование перспективных реактивных боевых самолетов, например, требовало значительного числа экспериментов), пригодных к массовому производству.
Неудивительно, что второй этап развития технологии связывают исключительно с мощными промышленными (точнее, с военно-промышленными) компаниями: такие гранды, как Fairchild, Westinghouse, Honeywell, спешили коммерциализовать первые экспериментальные наработки. На коммерциализацию ушло довольно много времени, и только к началу 70-х годов академическая наука стала получать целевое финансирование от промышленности для решения задач сокращения стоимости и расширения областей применения MEMS-устройств.
Еще через десять лет этот этап также был преодолен - и наступила пора микромашинного производства. Можно считать, что с конца девяностых годов прошлого века началась микромеханическая эпоха.
Многие эксперты, включая специалистов одной из ведущих фирм в этой области - Integrated Sensing Systems (http://www.mems-issys.com), - полагают, что MEMS-технология привносит буквально революционные изменения в каждую область применения путем совмещения микроэлектроники на основе кремния с микромеханической технологией, что позволяет реализовать систему на одном кристалле SoC (Systems-on-a-Chip). Так, технология MEMS дала новый импульс развитию систем инерциальной навигации и интегрированных систем, открыв путь к разработке "умных" изделий, увеличив вычислительные способности микродатчиков и расширив возможности дизайна таких систем.
Сегодня MEMS-устройства применяются практически повсюду. Это могут быть миниатюрные детали (гидравлические и пневмоклапаны, струйные сопла принтера, пружины для подвески головки винчестера), микроинструменты (скальпели и пинцеты для работы с объектами микронных размеров), микромашины (моторы, насосы, турбины величиной с горошину), микророботы, микродатчики и исполнительные устройства, аналитические микролаборатории (на одном кристалле) и т. д.
3.3 Технологические вопросы. Микроактюаторы
Вообще говоря, микросистема предполагает интеграцию ряда различных технологий (MEMS, КМОП, оптической, гидравлической и т. д.) в одном модуле [8]. Например, технологии изготовления MEMS-устройств для СВЧ-применений (катушки индуктивности, варакторы, коммутаторы, резонаторы) подразумевают традиционные технологические циклы изготовления интегральных схем, адаптированные для создания трехмерных механических структур (это, например, объемная микрообработка, поверхностная микрообработка и так называемая технология LIGA).
Люди также интересуются этой лекцией: 10 Мониторы и видеоадаптеры.
Кремниевая объемная микрообработка включает технологию глубинного объемного травления. При таком процессе объемная структура получается внутри подложки благодаря ее анизотропным свойствам, т. е. различной скорости травления кристалла в зависимости от направления кристаллографических осей. Объемную структуру можно получить и методом наращивания, когда несколько подложек сплавляются и образуют вертикальные связи на атомарном уровне.
При поверхностной микромеханической обработке трехмерная структура образуется за счет последовательного наложения основных тонких пленок и удаления вспомогательных слоев в соответствии с требуемой топологией. Преимущество данной технологии - возможность многократного удаления (растворения) вспомогательных слоев без повреждения взаимосвязей базовых слоев. А главная ее особенность состоит в том, что она совместима с полупроводниковой технологией, поскольку для микрообработки используется обычная КМОП-технология [8].
Название технологии LIGA происходит от немецкой аббревиатуры Roentgen Lithography Galvanik Abformung, что означает комбинацию рентгеновской литографии, гальванотехники и прессовки (формовки). Здесь толстый фоторезистивный слой подвергается воздействию рентгеновских лучей (засветке) с последующим гальваническим осаждением высокопрофильных трехмерных структур. Сущность процесса заключается в использовании рентгеновского излучения от синхротрона для получения глубоких, с отвесными стенками топологических картин в полимерном материале. Излучение синхротрона имеет сверхмалый угол расходимости пучка. Источником излучения служат высокоэнергетические электроны (с энергией более 1 ГэВ), движущиеся с релятивистскими скоростями. Глубина проникновения излучения достигает нескольких миллиметров. Это обуславливает высокую эффективность экспонирования при малых временных затратах. Считается, что данная технология обеспечивает наилучшее отношение воспроизводимой ширины канала к его длине (при минимальных размерах).
Важнейшая составная часть большинства MEMS - микроактюатор. Обычно данное устройство преобразует энергию в управляемое движение. Размеры микроактюаторов могут довольно сильно варьироваться. Диапазон применения этих устройств чрезвычайно широк и при этом постоянно растет. Все методы активации (движение, деформация, приведение в действие) в таких устройствах кратко можно свести к следующим: электростатический, магнитный, пьезоэлектрический, гидравлический и тепловой. При оценке использования того или иного метода часто применяют законы пропорционального уменьшения размеров. Наиболее перспективными методами считаются пьезоэлектрический и гидравлический, хотя и другие имеют большое значение. Электростатическая активация применяется примерно в одной трети микроактюаторов, и это, вероятно, наиболее общий и хорошо разработанный метод; главные его недостатки - износ и слипание. Магнитные микроактюаторы обычно требуют относительно большого электрического тока, также на микроскопическом уровне. При использовании электростатических методов активации получаемый выходной сигнал на относительную единицу размерности лучше, чем при использовании магнитных методов. Иными словами, при одном и том же размере электростатическое устройство выдает несколько лучший выходной сигнал. Тепловые микроактюаторы тоже потребляют относительно много электрической энергии; главный их недостаток состоит в том, что генерируемое тепло приходится рассеивать.
Для оценки микроактюаторов используют такие критерии качества, как линейность, точность, погрешность, повторяемость, разрешение, гистерезис, пороговое значение, люфт, шум, сдвиг, несущая способность, амплитуда, чувствительность, скорость, переходная характеристика, масштабируемость, выход по энергии [8].
Рассмотрим подробнее устройства, характеристики и принципы работы трех видов навигационных датчиков, спроектированных с использованием микроэлектромеханической технологии:
- датчики давления и их применение в составе электронных высотомеров,
- датчики угловых скоростей (ДУСы),
- акселерометры.