Summary_ (Исследование некоторых типов дифференциальных уравнений с сильной нелинейностью), страница 4

PDF-файл Summary_ (Исследование некоторых типов дифференциальных уравнений с сильной нелинейностью), страница 4 Физико-математические науки (42068): Диссертация - Аспирантура и докторантураSummary_ (Исследование некоторых типов дифференциальных уравнений с сильной нелинейностью) - PDF, страница 4 (42068) - СтудИзба2019-05-20СтудИзба

Описание файла

Файл "Summary_" внутри архива находится в папке "Исследование некоторых типов дифференциальных уравнений с сильной нелинейностью". PDF-файл из архива "Исследование некоторых типов дифференциальных уравнений с сильной нелинейностью", который расположен в категории "". Всё это находится в предмете "физико-математические науки" из Аспирантура и докторантура, которые можно найти в файловом архиве НИУ ВШЭ. Не смотря на прямую связь этого архива с НИУ ВШЭ, его также можно найти и в других разделах. , а ещё этот архив представляет собой докторскую диссертацию, поэтому ещё представлен в разделе всех диссертаций на соискание учёной степени доктора физико-математических наук.

Просмотр PDF-файла онлайн

Текст 4 страницы из PDF

(96)-(97) in the case of many-particle sources for which the quasi-classicalapproximation can be applied and the field sources have the formJ 1,  J  , J 2,  J 3,  0,(98)where J  is the classical 4-vector of the current density.Then when the potentials A2,  A3,  0 , the Yang-Mills equations coincide with theMaxwell equations for the potentials A1, . That is why they can be regarded as a nonlineargeneralization of the Maxwell equations.Consider nontrivial solutions to the Yang-Mills equations (96)-(97) with the sources (98)in the stationary spherically symmetric case:J 1,0  c (r ), J 1,l  0, l  1, 2,3,J 2,  J 3,  0, r  (( x1 )2  ( x 2 )2  ( x3 )2 )1/ 2 ,(99)where  (r ) is the source charge density, x1, x 2 , x3 are Cartesian coordinates with the zeropoint at the center of the source and r is the distance between a point of the source and itscenter.In this case, solutions of these equations can be sought in the formAk ,0  0, A1,l  xl [u (r ) x0  u0 (r )], k , l  1, 2,3,A2,l  xl [v(r ) x0  v0 (r )], A3,l  xl [w(r ) x 0  w0 (r )], x 0  ct ,where u, u0 , v, v0 , w, w0 are some functions of r and t is time.Then from formula (97) for the field strengths, we find(100)17F 1,0l  xl u (r ), F 2,0l  xl v(r ), F 3,0l  xl w(r ),F k ,ml  0, k , m, l  1, 2,3.(101)Formulas (101) imply that the strengths of this Yang-Mills field are stationary and at thesame time, nonstationary potentials of form (100) correspond to them.Substituting expressions (100) and (101) into the Yang-Mills equations (96), we obtainthe following system of equations:ru  3u  gr 2 (wv0  vw0 )  4 ,(102)rv  3v  gr 2 (uw0  wu0 )  0, rw  3w  gr 2 (vu0  uv0 )  0.(103)Expressing w0 and v0 in Eqs.

(103) and substituting them into Eq. (102), we come to theequationr (u 2  v2  w2 )  6(u 2  v2  w2 )  8 u,(104)which is the only differential relation to be satisfied by the three functionsu(r ), v(r ) and w(r ) .The functions satisfying this equation can be represented in the following form:u   R (q ) cos  (q ) / r 3 ,v   R(q)sin  (q) cos  (q) / r 3 , w   R(q)sin  (q)sin (q) / r 3 ,qr00R(q)   cos  (q)dq, q  4  r 2 (r )dr ,(105)(106)where q  q(r ) presents the charge of the spherical region bounded by the radius r and (q) and  (q) are arbitrary differentiable functions.In order to choose a unique solution of the studied equations, let us consider thefollowing components, besides the components of the source 4-vectors of current densitiesJ k , :I k ,  J k ,  ( gc / 4 ) klm F l , Am ,(107)which, as follows from (96), satisfy the differential equation of conservation  I k ,  0 andthat is why can be identified with components of the full 4-vectors of current densities.

Usingthem, we can add the following relativistic invariant condition to the Yang-Mills equations:I k , I k ,  J k , J k , ,(108)expressing the conservation of the intrinsic energy in a source.The application of condition (108) and also the condition of equivalence of the axes withk=2 and k=3 in the gauge space allows one to find concrete expressions for the functions (q) and  (q) which acquire the form (q)  q / K0 , (q)   / 4, K0  const.3Ryder L. Quantum Field Theory.

– Мoscow: Mir, 1987.(109)18Then for the nonzero field strength components F 1,l 0 we findF 1,l 0  K sin(q / K ) x l / r 3 , K  K 0 / 2, l  1, 2, 3,(110)where q  q(r ) is determined by the formula given in (106).2.2. A solution to the Yang-Mills equations for nonstationary sphericallysymmetric sourcesIn the dissertation an investigation is carried out for the Yang-Mills equations (96)-(97)with the sources of the form(4 / c) J 1,0  j 0 (t , r ), (4 / c) J 1,l  x l j (t , r ), l  1,2,3,J 2,  J 3,  0, t  x 0 / c, r 2  ( x1 ) 2  ( x 2 ) 2  ( x 3 ) 2 ,(111)where t is time and r is the distance from the source center.The field potentials are sought in the formA1,0   0 (t , r ), A 2,0   0 (t , r ), A3,0   0 (t , r ),A1,l  x l  (t , r ), A 2,l  x l  (t , r ), A3,l  x l  (t , r ).(112)Then from (97) we obtain the following expressions for the field strengths:F k ,ml  0, k , m, l  1,2,3,F 1,0l  x l u (t , r ), F 2,0l  x l v(t , r ), F 3,0l  x l w(t , r ),(113)whereu  (1 / c) / t  (1 / r ) 0 / r  g ( 0    0 ),v  (1 / c) / t  (1 / r ) 0 / r  g ( 0   0 ),(114)w  (1 / c) / t  (1 / r ) 0 / r  g (  0   0  ).The Yang-Mills equation (96) results in the following system of equations:ru / r  3u  gr 2 ( w  v )   j 0 ,rv / r  3v  gr 2 (u  w )  0,(115)rw / r  3w  gr 2 (v  u )  0,(1 / c)u / t  g (v 0  w 0 )  j ,(1 / c)v / t  g ( w 0  u 0 )  0,(116)(1 / c)w / t  g (u  v )  0.00As is known, the relations D J k ,  0, where D is the Yang-Mills covariant derivative,are a consequence of the Yang-Mills equations.

This gives the following equations:(1 / c)j 0 / t  rj / r  3 j  0,j 0  0  r 2 j  0, j 0 0  r 2 j  0.(117)The considered field sources are invariant under the gauge rotation about the first axis.That is why the following condition can be fulfilled by the choice of a gauge:19j 0 0  r 2 j  0 .(118)Let us multiply the equations in (115) by j and add them to the corresponding equationsin (116) multiplied by j 0 . Then using relations (117) and (118) for the potentials, we cometo the following equations:(1 / c) j 0 u / t  j (ru / r  3u )  0,(1 / c) j 0 v / t  j (rv / r  3v)  0,(119)(1 / c) j 0 w / t  j (rw / r  3w)  0.Multiplying the three equations in (115) by u, v, w , respectively, and then adding them,we findu(ru / r  3u)  v(rv / r  3v)  w(rw / r  3w)   j 0 u .(120)The application of Eqs.

(107)-(108) gives the relation(ru / r  3u ) 2  (rv / r  3v) 2  (rw / r  3w) 2  (r / c) 2 [(u / t ) 2  (v / t ) 2  (w / t ) 2 ]  ( j 0 ) 2  r 2 j 2 .(121)An analysis of Eqs. (119) shows that they have the exact solution of the formru  P(q) / r 3 , v  Q(q) / r 3 , w  S (q) / r 3 , q   r 2 j 0 (t , r )dr ,0(122)where P, Q, S are differentiable functions of the argument q which is the charge of thespherical region of the radius r at the moment t .The substitution of (122) into Eqs. (120) and (121) givesPdP / dq  QdQ / dq  SdS / dq  P .(dP / dq) 2  (dQ / dq) 2  (dS / dq) 2  1 .(123)(124)For Eqs. (123) and (124) we find the following solution taking into account theequivalence of the second and third axes in the gauge space:P(q)  K sin(q / K ), Q(q)  S (q)  2 1/ 2 K[1  cos(q / K )] ,(125)where K is the constant introduced in the previous section.The obtained formulas allow one to generalize the stationary solution with sphericalsymmetry found above for the nonstationary spherically symmetric case.2.3.

Axially symmetric wave solutions to the Yang-Mills equationsLet us turn to axially symmetric wave solutions of the Yang-Mills equations (96)(97) in regions outside field sources where J k ,  0 . They can be sought in the formA k ,0   k ,0 ,A k ,1  ( k ,1 x   k , 2 y ) /  ,A k , 2  ( k ,1 y   k , 2 x) /  , A k ,3   k ,3 , k ,   k , ( ,  , z),   x 0 ,   ( x 2  y 2 )1/2 ,x  x1 , y  x 2 , z  x 3 .(126)20Then for the field strengths we findF k ,01  ( fF k ,12  fk ,1k ,4x fk ,2y ) /  , F k ,02  ( f, F k ,13  ( ffk ,qk ,5 fx fk ,qk ,6k ,1y fk ,2x) /  , F k ,03  fy ) /  , F k , 23  ( fk ,5y fk ,6k ,3,x) /  ,(127)( ,  , z ), q  1, 2, ..., 6,wherefk ,1  k ,1   k ,0  g klm l ,0 m,1 , ffk ,3  k ,3   zk ,0  g klm l ,0 m,3 , ffk ,5  zk ,1   k ,3  g klm l ,1 m,3 , fk ,2k ,4k ,6  k , 2  g klm l .0 m, 2 ,  k , 2   k , 2 /   g klm l ,1 m, 2 ,  zk , 2  g klm l , 2 m,3 ,(128)k ,   k , /  ,  k ,   k , /  ,  zk ,   k , / z.In the considered case J k ,  0 , the Yang-Mills equation (96) givesf k ,1  fk ,1/   f zk ,3  g klm ( f l ,1 m,1  f l , 2 m, 2  f l ,3 m,3 )  0,fk ,1  f zk ,5  g klm ( f l ,1 m,0  f l , 4 m, 2  f l ,5 m,3 )  0,fk , 2  f k , 4  f zk ,6  g klm ( f l , 2 m,0  f l , 4 m,1  f l ,6 m,3 )  0,fk ,3  f k ,5  fk ,5(129)/   g klm ( f l ,5 m,1  f l ,6 m, 2  f l ,3 m,0 ).The potential components  k , satisfying the system of equations (129) are sought in theform 1,0  0,  2,0  P( ,  ),  3,0  Q( ,  ),     z, 1, 2   (  ) / g ,  2,2   3,2  0,  k ,1  0,  k ,3   k ,0 ,(130)where P( ,  ), Q( ,  ) and  (  ) are some differentiable functions.Then from (128) we obtainf 1,1  0,f 2,1  P ,f 3,1  Q ,f 1, 2  0,f 2, 2  Q,f k ,3  0, f 1, 4  (    /  ) / g , f 2, 4  f 3, 4  0, f k ,5   ff 3, 2  P,k ,1, f k ,6   f k , 2 .(131)Substituting (130) and (131) into Eqs.

(129), we findP  P /    2 P  0, Q  Q /    2 Q  0, (    /  )  0.(132)Equations (132) have the following solutions that tend to zero as    :  b /  , P  G(  z ) /  b , Q  H (  z) /  b ,   x 0 ,(133)where G and H are arbitrary differentiable functions and b is an arbitrary nonzero constant.As a result, we obtain a class of axially symmetric solutions to the Yang-Mills equationsdescribing by formulas (130), (131) and (133).2.4. Non-Abelian expanding waves21In the dissertation, non-Abelian expanding waves radiated from cosmic sources of theYang-Mills fields in the case of a N-parametric gauge group are studied. Outside theirsources, the Yang-Mills fields are described by the equations4  F a,  f abc Ab F c,  0 ,(134)F a,    Aa,   Aa,  f abc Ab, Ac, ,(135)Aa, and F a, are potentials and strengths of awhere  ,  0,1,2,3, a, b, c  1,2,..., N ,Yang-Mills field, respectively, f abc are the structure constants of an N-parametric gaugegroup and     / x  , where x  are orthogonal space-time coordinates of the MInkowskigeometry.Wave solutions to Eqs.

(134)-(135) are thought in the formA a ,0  u a ( y 0 , y1 , y 2 , y3 ),A a ,l  ( x l / r ) A a , 0 ,y 0  x 0  r , yl  x l ,l  1, 2, 3, a  1,2,..., N , r  ( x1 ) 2  ( x 2 ) 2  ( x 3 ) 2 ,(136)where u a are some functions of the wave phase y0  x 0  r and spatial coordinates yl  x l .Further the most interesting case for physical applications is studied in which we have agauge group with compact semi-simple Lie algebra corresponding to completelyantisymmetric structure constants f abc . Then after the substitution of expressions (136) intoformula (135) for the strengths of a Yang-Mills field, we findF a,0n  u a / yn , F a,in  (1 / r )( yi u a / yn  y n u a / yi ), i, n  1,2,3. (137)Let us substitute formulas (136) and (137) into Eq.

(134) and introduce the notations3u a 2u aap   yi, q .2yii 1i 1 y i3a(138)Then after calculations, we come to the following equations:1  p aq   f abc u b p c , r r  y 0ayny12  y 22  y32 ,(139)p a p a 0, n  1,2,3.r 2 y n(140)p a  s a ( y0 ) / r ,(141)Equations (140) have the solutionwhere s a are arbitrary differentiable functions of the argument y 0 .From (138), (139) and (141) we come to the following equations:3 yii 14u a s a ( y 0 ),yir(142)Slavnov А.А., Faddeev L.D.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5231
Авторов
на СтудИзбе
424
Средний доход
с одного платного файла
Обучение Подробнее