DZ_2_modul (785502)
Текст из файла
tIPOWOE DOMA[NEE ZADANIE MODULQ 2 “mETOD RAZDELENIQPEREMENNYH. sPECIALXNYE FUNKCII”PO KURSU “urmf I pf” DLQ rl 1, rl 2wARIANT 1rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W KRUGE (1 BALL):zADA^A 1.∆u = 0, 0 ≤ r < 2, 0 ≤ ϕ < 2π;u(2, ϕ) = 2 cos3 ϕ − sin3 ϕ + sin ϕ.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W PRQMOUGOLX-zADA^A 2.NIKE (1 BALL):∆u = 0, 0 < x < l, 0 < y < y0 ;y − y0 u x=0 =, u0x x=l = 0, 0 ≤ y ≤ y0 ;8y01πx5πx uy y=0 = − sin , uy=y = sin, 0 ≤ x ≤ l.02l2l2lzADA^A 3.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W KRUGOWOMCILINDRE (3 BALLa):∆u = 0, 0 ≤ r < R, 0 ≤ ϕ < 2π, 0 < z < l; ur=R = 0, 0 ≤ ϕ < 2π, 0 ≤ z ≤ l;r = 0, 0 ≤ r ≤ R, 0 ≤ ϕ < 2π. u=vcosϕ,u0z=0z=lRrE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ gELXMGOLXCA W KRUGEzADA^A 4.(2 BALLA):zADA^A 5.(3 BALLA):∆u + u = 0, 0 ≤ r < 2, 0 ≤ ϕ < 2π;u0r (2, ϕ) = 2 cos3 ϕ − 3 sin ϕ.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ gELXMGOLXCA W [ARE∆u + 4u = 0, 0 ≤ r < 1, 0 ≤ ϕ < 2π,u(1, ϕ, ϑ) = 3 cos2 ϑ + sin ϑ.0 ≤ ϑ ≤ π;rl1, rl2, urmf I pf, MODULX II, TIPOWOE DOMA[NEE ZADANIEMAX:10MIN:72wARIANT 2zADA^A 1.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W KRUGE (1 BALL):zADA^A 2.NIKE (1 BALL):∆u = 0, 0 ≤ r < 1, 0 ≤ ϕ < 2π;u0r (1, ϕ) = 3 cos3 ϕ + sin3 ϕ − sin ϕ.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W PRQMOUGOLX-∆u = 0, 0 < x < l, 0 < y < y0 ; 0 y(2y0 − y) = 0, 0 ≤ y ≤ y0 ;ux x=0 =,u3x=l4y033πx13πx0 u0 =−cos,ucos, 0 ≤ x ≤ l.y y=0y y=y0 =2l2l2l2lzADA^A 3.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W KRUGOWOMCILINDRE (3 BALLa):∆u = 0, 0 ≤ r < R, 0 ≤ ϕ ≤ 2π, 0 < z < l; ur=R = 0, 0 ≤ ϕ ≤ 2π, 0 ≤ z ≤ l;r = 0, 0 ≤ r ≤ R, 0 ≤ ϕ ≤ 2π. u=vsinϕ,u0zz=0z=lRzADA^A 4.(2 BALLA):rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ gELXMGOLXCA W KRUGEzADA^A 5.(3 BALLA):∆u + 4u = 0, 0 ≤ r < 1,u0r (1, ϕ) = cos3 ϕ + sin ϕ.0 ≤ ϕ < 2π;rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ gELXMGOLXCA W [ARE∆u + u = 0, 0 ≤ r < 2, 0 ≤ ϕ < 2π,u(2, ϕ, ϑ) = cos2 ϑ − 2 sin ϑ.0 ≤ ϑ ≤ π;rl1, rl2, urmf I pf, MODULX II, TIPOWOE DOMA[NEE ZADANIEMAX:10MIN:73wARIANT 3rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W KRUGE (1 BALL):zADA^A 1.∆u = 0, 0 ≤ r < 4, 0 < ϕ < 2π;u(4, ϕ) = cos3 ϕ + 4 sin3 ϕ + sin2 ϕ.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W PRQMOUGOLX-zADA^A 2.NIKE (1 BALL):∆u = 0, 0 < x < l, 0 < y < y0 ;y − y0 u x=0 =, ux=l = 0, 0 ≤ y ≤ y0 ;8y022πxπx u0y =−sin,u=sin, 0 ≤ x ≤ l.y=0y=y0lllzADA^A 3.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W KRUGOWOMCILINDRE (3 BALLa):∆u = 0, 0 ≤ r < R, 0 ≤ ϕ ≤ 2π, 0 < z < l; ur r=R , 0 ≤ ϕ ≤ 2π, 0 ≤ z ≤ l;r u = 0, 0 ≤ r ≤ R, 0 ≤ ϕ ≤ 2π.=vcosϕ,u0z=0z=lRrE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ gELXMGOLXCA W KRUGEzADA^A 4.(2 BALLA):zADA^A 5.(3 BALLA):∆u + 9u = 0, 0 ≤ r < 2,u(2, ϕ) = 3 cos3 ϕ − sin ϕ.0 ≤ ϕ < 2π;rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ gELXMGOLXCA W [ARE∆u + 4u = 0, 0 ≤ r < 1, 0 ≤ ϕ < 2π,u0r (1, ϕ, ϑ) = 4 sin ϑ + 3 sin ϑ.0 ≤ ϑ ≤ π;rl1, rl2, urmf I pf, MODULX II, TIPOWOE DOMA[NEE ZADANIEMAX:10MIN:74wARIANT 4rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W KRUGE (1 BALL):zADA^A 1.∆u = 0, 0 ≤ r < 3, 0 < ϕ < 2π;u(3, ϕ) = 4 sin3 ϕ − sin2 ϕ + sin ϕ.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W PRQMOUGOLX-zADA^A 2.NIKE (1 BALL):∆u = 0, 0 < x < l, 0 < y < y0 ; 0 y − y00ux x=0 =,u0 ≤ y ≤ y0 ;x x=l = 0,22y0πx u, 0 ≤ x ≤ l.=1,u=cosy=0y=y0lzADA^A 3.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W KRUGOWOMCILINDRE (3 BALLa):∆u = 0, 0 ≤ r < R, 0 ≤ ϕ ≤ 2π, 0 < z < l; ur r=R = 0, 0 ≤ ϕ ≤ 2π, 0 ≤ z ≤ l;r u=vsinϕ,u0 ≤ r ≤ R, 0 ≤ ϕ ≤ 2π.0z z=l = 0,z=0RrE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ gELXMGOLXCA W KRUGEzADA^A 4.(2 BALLA):zADA^A 5.(3 BALLA):∆u + u = 0, 0 ≤ r < 3,u(3, ϕ) = cos2 ϕ − 3 sin ϕ.0 ≤ ϕ < 2π;rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ gELXMGOLXCA W [ARE∆u + 4u = 0, 0 ≤ r < 1, 0 ≤ ϕ < 2π,u0r (1, ϕ, ϑ) = 4 cos ϑ − 2 sin ϑ.0 ≤ ϑ ≤ π;rl1, rl2, urmf I pf, MODULX II, TIPOWOE DOMA[NEE ZADANIEMAX:10MIN:75wARIANT 5rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W KRUGE (1 BALL):zADA^A 1.∆u = 0, 0 ≤ r < 2, 0 < ϕ < 2π;u0r (2, ϕ) = 2 cos3 ϕ + sin ϕ.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W PRQMOUGOLX-zADA^A 2.NIKE (1 BALL):∆u = 0, 0 < x < l, 0 < y < y0 ;y − y0 u x=0 =, u0x x=l = 0, 0 ≤ y ≤ y0 ;2y0πx5πx u=sin=−sin,u, 0 ≤ x ≤ l.y=y0y=02l2lzADA^A 3.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W KRUGOWOMCILINDRE (3 BALLa):∆u = 0, 0 ≤ r < R, 0 ≤ ϕ ≤ 2π, 0 < z < l; ur=R = 0, 0 ≤ ϕ ≤ 2π, 0 ≤ z ≤ l;r = 0, 0 ≤ r ≤ R, 0 ≤ ϕ ≤ 2π. uz =vcosϕ,u0 2z=0z=lRrE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ gELXMGOLXCA W KRUGEzADA^A 4.(2 BALLA):zADA^A 5.(3 BALLA):∆u + u = 0, 0 ≤ r < 2, 0 ≤ ϕ < 2π;u0r (2, ϕ) = cos3 ϕ − 2 sin3 ϕ.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ gELXMGOLXCA W [ARE∆u + 9u = 0, 0 ≤ r < 1, 0 ≤ ϕ < 2π,u(1, ϕ, ϑ) = sin2 ϑ + 3 sin ϑ.0 ≤ ϑ ≤ π;rl1, rl2, urmf I pf, MODULX II, TIPOWOE DOMA[NEE ZADANIEMAX:10MIN:76wARIANT 6zADA^A 1.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W KRUGE (1 BALL):zADA^A 2.NIKE (1 BALL):∆u = 0, 0 ≤ r < 1, 0 < ϕ < 2π;u(1, ϕ) = cos3 ϕ − cos2 ϕ + sin ϕ.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W PRQMOUGOLX-∆u = 0, 0 < x < l, 0 < y < y0 ; 0 y(y − 2y0 )0ux x=0 =,u0 ≤ y ≤ y0 ;x x=l = 0,364y0πx33πx0 u=−cos,ucos, 0 ≤ x ≤ l.y y=y0 =y=0lllzADA^A 3.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W KRUGOWOMCILINDRE (3 BALLa):∆u = 0, 0 ≤ r < R, 0 ≤ ϕ ≤ 2π, 0 < z < l; ur=R = 0, 0 ≤ ϕ ≤ 2π, 0 ≤ z ≤ l;r uz sinϕ,u0 ≤ r ≤ R, 0 ≤ ϕ ≤ 2π.=vz z=l = 0,0 2z=0RzADA^A 4.(2 BALLA):rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ gELXMGOLXCA W KRUGEzADA^A 5.(3 BALLA):∆u + 4u = 0, 0 ≤ r < 2,u0r (2, ϕ) = sin3 ϕ + 5 cos ϕ.0 ≤ ϕ < 2π;rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ gELXMGOLXCA W [ARE∆u + u = 0, 0 ≤ r < 3, 0 ≤ ϕ < 2π,u(3, ϕ, ϑ) = cos ϑ + 2 sin2 ϑ.0 ≤ ϑ ≤ π;rl1, rl2, urmf I pf, MODULX II, TIPOWOE DOMA[NEE ZADANIEMAX:10MIN:77wARIANT 7zADA^A 1.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W KRUGE (1 BALL):zADA^A 2.NIKE (1 BALL):∆u = 0, 0 ≤ r < 3, 0 < ϕ < 2π;u0r (3, ϕ) = 3 sin3 ϕ − cos3 ϕ + sin ϕ.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W PRQMOUGOLX-∆u = 0, 0 < x < l, 0 < y < y0 ; y(y − 2y0 ) = 0, 0 ≤ y ≤ y0 ;u x=0 =,u2x=l32y02πx1πx0 u=−sin,usin , 0 ≤ x ≤ l.y y=y0 =y=0lllzADA^A 3.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W KRUGOWOMCILINDRE (3 BALLa):∆u = 0, 0 ≤ r < R, 0 ≤ ϕ ≤ 2π, 0 < z < l; ur r=R = 0, 0 ≤ ϕ ≤ 2π, 0 ≤ z ≤ l;r = 0, 0 ≤ r ≤ R, 0 ≤ ϕ ≤ 2π. uz cosϕ,u=v0 2z=lz=0RzADA^A 4.(2 BALLA):rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ gELXMGOLXCA W KRUGEzADA^A 5.(3 BALLA):∆u + 16u = 0, 0 ≤ r < 1,u(1, ϕ) = cos2 ϕ − 3 sin ϕ.0 ≤ ϕ < 2π;rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ gELXMGOLXCA W [ARE∆u + u = 0, 0 ≤ r < 2, 0 ≤ ϕ < 2π,u0r (2, ϕ, ϑ) = 3 cos ϑ + sin ϑ.0 ≤ ϑ ≤ π;rl1, rl2, urmf I pf, MODULX II, TIPOWOE DOMA[NEE ZADANIEMAX:10MIN:78wARIANT 8rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W KRUGE (1 BALL):zADA^A 1.∆u = 0, 0 ≤ r < 4, 0 < ϕ < 2π;u(4, ϕ) = 2 cos3 ϕ + 4 sin3 ϕ − sin2 ϕ.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W PRQMOUGOLX-zADA^A 2.NIKE (1 BALL):∆u = 0, 0 < x < l, 0 < y < y0 ;5πy1πy u x=0 = − cos, u0x x=l =cos, 0 ≤ y ≤ y0 ;2y2y2y000x(x − 2l) u0y =,u= 0, 0 ≤ x ≤ l.y=y0y=064l3zADA^A 3.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W KRUGOWOMCILINDRE (3 BALLa):∆u = 0, 0 ≤ r < R, 0 ≤ ϕ ≤ 2π, 0 < z < l; ur=R = 0, 0 ≤ ϕ ≤ 2π, 0 ≤ z ≤ l;r uz sinϕ,u0 ≤ r ≤ R, 0 ≤ ϕ ≤ 2π.=vz z=l = 0,0 2z=0RrE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ gELXMGOLXCA W KRUGEzADA^A 4.(2 BALLA):zADA^A 5.(3 BALLA):∆u + u = 0, 0 ≤ r < 2,u0r (2, ϕ) = cos3 ϕ + sin ϕ.0 ≤ ϕ < 2π;rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ gELXMGOLXCA W [ARE∆u + 9u = 0, 0 ≤ r < 1, 0 ≤ ϕ < 2π,u(1, ϕ, ϑ) = 2 cos2 ϑ + 7 cos ϑ.0 ≤ ϑ ≤ π;rl1, rl2, urmf I pf, MODULX II, TIPOWOE DOMA[NEE ZADANIEMAX:10MIN:79wARIANT 9zADA^A 1.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W KRUGE (1 BALL):zADA^A 2.NIKE (1 BALL):∆u = 0, 0 ≤ r < 1, 0 < ϕ < 2π;u0r (1, ϕ) = −4 cos3 ϕ − sin3 ϕ + 2 sin ϕ + 2 cos ϕ.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W PRQMOUGOLX∆u = 0, 0 < x < l, 0 < y < y0 ;1πy 0 ux x=0 = − cos , ux=l = 1, 0 ≤ y ≤ y0 ;y0y0x−l0 u0 , uy y=y0 = 0, 0 ≤ x ≤ l.y y=0 =16l2zADA^A 3.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W KRUGOWOMCILINDRE (3 BALLa):∆u = 0, 0 ≤ r < R, 0 ≤ ϕ ≤ 2π, 0 < z < l; ur=R = 0, 0 ≤ ϕ ≤ 2π, 0 ≤ z ≤ l;r u = 0, 0 ≤ r ≤ R, 0 ≤ ϕ ≤ 2π.sinϕ,u=v0z=0z=lRzADA^A 4.(2 BALLA):rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ gELXMGOLXCA W KRUGEzADA^A 5.(3 BALLA):∆u + u = 0, 0 ≤ r < 3, 0 ≤ ϕ < 2π;u(3, ϕ) = cos3 ϕ + sin2 ϕ − cos ϕ.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ gELXMGOLXCA W [ARE∆u + u = 0, 0 ≤ r < 1, 0 ≤ ϕ < 2π,u0r (1, ϕ, ϑ) = cos ϑ − 5 sin ϑ.0 ≤ ϑ ≤ π;rl1, rl2, urmf I pf, MODULX II, TIPOWOE DOMA[NEE ZADANIEMAX:10MIN:710wARIANT 10rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W KRUGE (1 BALL):zADA^A 1.zADA^A 2.NIKE (1 BALL):∆u = 0, 0 ≤ r < 2, 0 < ϕ < 2π;u(2, ϕ) = 2 cos3 ϕ − 4 sin3 ϕ + 3 cos ϕ.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W PRQMOUGOLX-∆u = 0, 0 < x < l, 0 < y < y0 ;πyπy u x=0 = − cos, ux=l = cos, 0 ≤ y ≤ y0 ;2y02y0x−l u0y =,u= 0, 0 ≤ x ≤ l.y=0y=y02l2zADA^A 3.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W KRUGOWOMCILINDRE (3 BALLa):∆u = 0, 0 ≤ r < R, 0 ≤ ϕ ≤ 2π, 0 < z < l; ur=R = 0, 0 ≤ ϕ ≤ 2π, 0 ≤ z ≤ l;r ucosϕ,u0 ≤ r ≤ R, 0 ≤ ϕ ≤ 2π.=vz z=l = 0,0z=0RzADA^A 4.(2 BALLA):rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ gELXMGOLXCA W KRUGEzADA^A 5.(3 BALLA):∆u + 9u = 0, 0 ≤ r < 1,u0r (1, ϕ) = sin3 ϕ + 3 cos ϕ.0 ≤ ϕ < 2π;rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ gELXMGOLXCA W [ARE∆u + u = 0, 0 ≤ r < 4, 0 ≤ ϕ < 2π,u0r (4, ϕ, ϑ) = cos ϑ + sin ϑ.0 ≤ ϑ ≤ π;rl1, rl2, urmf I pf, MODULX II, TIPOWOE DOMA[NEE ZADANIEMAX:10MIN:711wARIANT 11rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W KRUGE (1 BALL):zADA^A 1.∆u = 0, 0 ≤ r < 3, 0 < ϕ < 2π;u0r (3, ϕ) = sin3 ϕ − cos3 ϕ + 3 sin ϕ.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W PRQMOUGOLX-zADA^A 2.NIKE (1 BALL):∆u = 0, 0 < x < l, 0 < y < y0 ;1πy1πy 0 ux x=0 = − sin , u0x x=l =sin , 0 ≤ y ≤ y0 ;y0y03y0y0x(2l − x) u=,u= 0, 0 ≤ x ≤ l.y=0y=04l2zADA^A 3.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W KRUGOWOMCILINDRE (3 BALLa):∆u = 0, 0 ≤ r < R, 0 ≤ ϕ ≤ 2π, 0 < z < l; ur r=R = 0, 0 ≤ ϕ ≤ 2π, 0 ≤ z ≤ l;r = 0, 0 ≤ r ≤ R, 0 ≤ ϕ ≤ 2π. usinϕ,u=v0z=lz=0RrE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ gELXMGOLXCA W KRUGEzADA^A 4.(2 BALLA):zADA^A 5.(3 BALLA):∆u + 4u = 0, 0 ≤ r < 1,u(1, ϕ) = cos2 ϕ − 2 sin ϕ.0 ≤ ϕ < 2π;rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ gELXMGOLXCA W [ARE∆u + 9u = 0, 0 ≤ r < 1, 0 ≤ ϕ < 2π,u(1, ϕ, ϑ) = cos2 ϑ + 3 sin ϑ.0 ≤ ϑ ≤ π;rl1, rl2, urmf I pf, MODULX II, TIPOWOE DOMA[NEE ZADANIEMAX:10MIN:712wARIANT 12rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W KRUGE (1 BALL):zADA^A 1.∆u = 0, 0 ≤ r < 6, 0 < ϕ < 2π;u0r (6, ϕ) = 2 cos3 ϕ − 3 cos3 ϕ + cos ϕ.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W PRQMOUGOLX-zADA^A 2.NIKE (1 BALL):∆u = 0, 0 < x < l, 0 < y < y0 ;πy22πy u x=0 = − sin , u0x x=l = sin, 0 ≤ y ≤ y0 ;yyy000x(x − 2l) u=,u= 0, 0 ≤ x ≤ l.y=0y=y032l2zADA^A 3.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W KRUGOWOMCILINDRE (3 BALLa):∆u = 0, 0 ≤ r < R, 0 ≤ ϕ ≤ 2π, 0 < z < l; ur r=R = 0, 0 ≤ ϕ ≤ 2π, 0 ≤ z ≤ l;r ucosϕ,u0 ≤ r ≤ R, 0 ≤ ϕ ≤ 2π.=vz z=l = 0,0z=0RrE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ gELXMGOLXCA W KRUGEzADA^A 4.(2 BALLA):zADA^A 5.(3 BALLA):∆u + u = 0, 0 ≤ r < 2,u(2, ϕ) = cos2 ϕ + 5 sin ϕ.0 ≤ ϕ < 2π;rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ gELXMGOLXCA W [ARE∆u + 4u = 0, 0 ≤ r < 1, 0 ≤ ϕ < 2π,u0r (1, ϕ, ϑ) = cos ϑ − 2 sin ϑ.0 ≤ ϑ ≤ π;rl1, rl2, urmf I pf, MODULX II, TIPOWOE DOMA[NEE ZADANIEMAX:10MIN:713wARIANT 13zADA^A 1.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W KRUGE (1 BALL):zADA^A 2.NIKE (1 BALL):∆u = 0, 0 ≤ r < 4, 0 < ϕ < 2π;u0r (4, ϕ) = 2 cos3 ϕ + 2 sin3 ϕ + 2 sin ϕ.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W PRQMOUGOLX-∆u = 0, 0 < x < l, 0 < y < y0 ;πy33πy1 0 ux x=0 = −sin, u0x x=l =sin,2y02y02y02y0x(2l − x)0 u=,u0 ≤ x ≤ l.y y=y0 = 0,y=04l2zADA^A 3.0 ≤ y ≤ y0 ;rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W KRUGOWOMCILINDRE (3 BALLa):∆u = 0, 0 ≤ r < R, 0 ≤ ϕ ≤ 2π, 0 < z < l; ur=R = 0, 0 ≤ ϕ ≤ 2π, 0 ≤ z ≤ l;r = 0, 0 ≤ r ≤ R, 0 ≤ ϕ ≤ 2π. uz =vsinϕ,u0z=0z=lR2zADA^A 4.(2 BALLA):rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ gELXMGOLXCA W KRUGEzADA^A 5.(3 BALLA):∆u + 16u = 0, 0 ≤ r < 2,u0r (2, ϕ) = cos3 ϕ − sin ϕ.0 ≤ ϕ < 2π;rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ gELXMGOLXCA W [ARE∆u + u = 0, 0 ≤ r < 1, 0 ≤ ϕ < 2π,u0r (1, ϕ, ϑ) = 4 cos ϑ − 2 sin ϑ.0 ≤ ϑ ≤ π;rl1, rl2, urmf I pf, MODULX II, TIPOWOE DOMA[NEE ZADANIEMAX:10MIN:714wARIANT 14rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W KRUGE (1 BALL):zADA^A 1.zADA^A 2.NIKE (1 BALL):∆u = 0, 0 ≤ r < 1, 0 < ϕ < 2π;u(1, ϕ) = − sin3 ϕ − 2 sin2 ϕ + 3 sin ϕ.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W PRQMOUGOLX-∆u = 0, 0 < x < l, 0 < y < y0 ;πy5πy u x=0 = − sin, ux=l = sin, 0 ≤ y ≤ y0 ;2y2y00x−l0 u,u0 ≤ x ≤ l.=y y=y0 = 0,y=02lzADA^A 3.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W KRUGOWOMCILINDRE (3 BALLa):∆u = 0, 0 ≤ r < R, 0 ≤ ϕ ≤ 2π, 0 < z < l; ur=R = 0, 0 ≤ ϕ ≤ 2π, 0 ≤ z ≤ l;r uz =v0 ≤ r ≤ R, 0 ≤ ϕ ≤ 2π.cosϕ,u0 2z z=l = 0,z=0RzADA^A 4.(2 BALLA):rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ gELXMGOLXCA W KRUGEzADA^A 5.(3 BALLA):∆u + 9u = 0, 0 ≤ r < 1,u(1, ϕ) = cos2 ϕ − 6 sin3 ϕ.0 ≤ ϕ < 2π;rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ gELXMGOLXCA W [ARE∆u + u = 0, 0 ≤ r < 1, 0 ≤ ϕ < 2π,u0r (1, ϕ, ϑ) = 2 cos ϑ + 3 sin ϑ.0 ≤ ϑ ≤ π;rl1, rl2, urmf I pf, MODULX II, TIPOWOE DOMA[NEE ZADANIEMAX:10MIN:715wARIANT 15zADA^A 1.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W KRUGE (1 BALL):zADA^A 2.NIKE (1 BALL):∆u = 0, 0 ≤ r < 2, 0 < ϕ < 2π;u(2, ϕ) = 4 cos3 ϕ − 2 sin3 ϕ + cos2 ϕ.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W PRQMOUGOLX-∆u = 0, 0 < x < l, 0 < y < y0 ;y0 − y u x=0 = 0, u0x x=l =0 ≤ y ≤ y0 ;2 ,16y033πxπx u0y y=0 = − sin, uy=y0 = sin , 0 ≤ x ≤ l.2l2l2lzADA^A 3.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W KRUGOWOMCILINDRE (3 BALLa):∆u = 0, 0 ≤ r < R, 0 ≤ ϕ ≤ 2π, 0 < z < l; ur r=R = 0, 0 ≤ ϕ ≤ 2π, 0 ≤ z ≤ l;r = 0, 0 ≤ r ≤ R, 0 ≤ ϕ ≤ 2π. uz sinϕ,u=v0 2z=lz=0RzADA^A 4.(2 BALLA):rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ gELXMGOLXCA W KRUGEzADA^A 5.(3 BALLA):∆u + 4u = 0, 0 ≤ r < 2,u(2, ϕ) = cos3 ϕ − sin2 ϕ.0 ≤ ϕ < 2π;rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ gELXMGOLXCA W [ARE∆u + u = 0, 0 ≤ r < 1, 0 ≤ ϕ < 2π,u0r (1, ϕ, ϑ) = cos ϑ + 4 sin ϑ.0 ≤ ϑ ≤ π;rl1, rl2, urmf I pf, MODULX II, TIPOWOE DOMA[NEE ZADANIEMAX:10MIN:716wARIANT 16rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W KRUGE (1 BALL):zADA^A 1.∆u = 0, 0 ≤ r < 3, 0 < ϕ < 2π;u0r (3, ϕ) = 2 cos3 ϕ − 4 sin3 ϕ + cos ϕ.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W PRQMOUGOLX-zADA^A 2.NIKE (1 BALL):∆u = 0, 0 < x < l, 0 < y < y0 ;y(y − 2y0 ) 0 ux x=0 = 0, ux=l =, 0 ≤ y ≤ y0 ;4y021πx33πx0 u0 =−cos,u=cos, 0 ≤ x ≤ l.y y=0y y=y02l2l2l2lzADA^A 3.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W KRUGOWOMCILINDRE (3 BALLa):∆u = 0, 0 ≤ r < R, 0 ≤ ϕ ≤ 2π, 0 < z < l; ur=R = 0, 0 ≤ ϕ ≤ 2π, 0 ≤ z ≤ l;r uz = 0, 0 ≤ r ≤ R, 0 ≤ ϕ ≤ 2π.=vcosϕ,u0zz=0z=lR2rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ gELXMGOLXCA W KRUGEzADA^A 4.(2 BALLA):zADA^A 5.(3 BALLA):∆u + 9u = 0, 0 ≤ r < 3,u(3, ϕ) = cos2 ϕ − 3 sin ϕ.0 ≤ ϕ < 2π;rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ gELXMGOLXCA W [ARE∆u + 4u = 0, 0 ≤ r < 1, 0 ≤ ϕ < 2π,u(1, ϕ, ϑ) = cos ϑ − 2 sin2 ϑ.0 ≤ ϑ ≤ π;rl1, rl2, urmf I pf, MODULX II, TIPOWOE DOMA[NEE ZADANIEMAX:10MIN:717wARIANT 17rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W KRUGE (1 BALL):zADA^A 1.∆u = 0, 0 ≤ r < 4, 0 < ϕ < 2π;u(4, ϕ) = 2 cos2 ϕ − sin3 ϕ + cos ϕ.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W PRQMOUGOLX-zADA^A 2.NIKE (1 BALL):∆u = 0, 0 < x < l, 0 < y < y0 ;y0 − y u x=0 = 0, ux=l =, 0 ≤ y ≤ y0 ;8y044πxπx u0 =−sin,u=sin, 0 ≤ x ≤ l.y y=0y=y0lllzADA^A 3.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W KRUGOWOMCILINDRE (3 BALLa):∆u = 0, 0 ≤ r < R, 0 ≤ ϕ ≤ 2π, 0 < z < l; u r=R = 0, 0 ≤ ϕ ≤ 2π, 0 ≤ z ≤ l;r2 = 0, 0 ≤ r ≤ R, 0 ≤ ϕ ≤ 2π. u=υcos2ϕ,u0z=0z=lR2rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ gELXMGOLXCA W KRUGEzADA^A 4.(2 BALLA):zADA^A 5.(3 BALLA):∆u + u = 0, 0 ≤ r < 2, 0 ≤ ϕ < 2π;u0r (2, ϕ) = 2 cos3 ϕ − sin ϕ.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ gELXMGOLXCA W [ARE∆u + 4u = 0, 0 ≤ r < 1, 0 ≤ ϕ < 2π,u(1, ϕ, ϑ) = 5 cos ϑ − sin ϑ.0 ≤ ϑ ≤ π;rl1, rl2, urmf I pf, MODULX II, TIPOWOE DOMA[NEE ZADANIEMAX:10MIN:718wARIANT 18rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W KRUGE (1 BALL):zADA^A 1.∆u = 0, 0 ≤ r < 5, 0 < ϕ < 2π;u0r (5, ϕ) = 2 sin3 ϕ − sin ϕ + 2 cos ϕ.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W PRQMOUGOLX-zADA^A 2.NIKE (1 BALL):∆u = 0, 0 < x < l, 0 < y < y0 ;y0 − y 0 ux x=0 = 0, u0x x=l =0 ≤ y ≤ y0 ;2 ,2y02πx uy=0 = − cos, uy=y0 = 1, 0 ≤ x ≤ l.lzADA^A 3.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W KRUGOWOMCILINDRE (3 BALLa):∆u = 0, 0 ≤ r < R, 0 ≤ ϕ ≤ 2π, 0 < z < l; u r=R = 0, 0 ≤ ϕ ≤ 2π, 0 ≤ z ≤ l;r2 u z=0 = v0 2 sin 2ϕ, uz z=l = 0, 0 ≤ r ≤ R, 0 ≤ ϕ ≤ 2π.RrE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ gELXMGOLXCA W KRUGEzADA^A 4.(2 BALLA):zADA^A 5.(3 BALLA):∆u + u = 0, 0 ≤ r < 2,u(2, ϕ) = cos2 ϕ + 5 sin ϕ.0 ≤ ϕ < 2π;rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ gELXMGOLXCA W [ARE∆u + 4u = 0, 0 ≤ r < 3, 0 ≤ ϕ < 2π,u(3, ϕ, ϑ) = 3 cos ϑ − 2 sin ϑ.0 ≤ ϑ ≤ π;rl1, rl2, urmf I pf, MODULX II, TIPOWOE DOMA[NEE ZADANIEMAX:10MIN:719wARIANT 19zADA^A 1.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W KRUGE (1 BALL):zADA^A 2.NIKE (1 BALL):∆u = 0, 0 ≤ r < 2, 0 < ϕ < 2π;u(2, ϕ) = 2 cos3 ϕ + 4 sin3 ϕ + 2 sin ϕ.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W PRQMOUGOLX∆u = 0, 0 < x < l, 0 < y < y0 ;y0 − y u x=0 = 0, u0x x=l =, 0 ≤ y ≤ y0 ;2y02πx3πx u=sin,u=sin, 0 ≤ x ≤ l.y=0y=y02l2lzADA^A 3.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W KRUGOWOMCILINDRE (3 BALLa):∆u = 0, 0 ≤ r < R, 0 ≤ ϕ ≤ 2π, 0 < z < l; ur r=R = 0, 0 ≤ ϕ ≤ 2π, 0 ≤ z ≤ l;r2 u z=0 = v0 2 cos 2ϕ, uz=l = 0, 0 ≤ r ≤ R, 0 ≤ ϕ ≤ 2π.RzADA^A 4.(2 BALLA):rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ gELXMGOLXCA W KRUGEzADA^A 5.(3 BALLA):∆u + 4u = 0, 0 ≤ r < 2, 0 ≤ ϕ < 2π;u0r (2, ϕ) = 3 cos3 ϕ + 5 cos ϕ.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ gELXMGOLXCA W [ARE∆u + u = 0, 0 ≤ r < 2, 0 ≤ ϕ < 2π,u0r (2, ϕ, ϑ) = cos ϑ + sin ϑ.0 ≤ ϑ ≤ π;rl1, rl2, urmf I pf, MODULX II, TIPOWOE DOMA[NEE ZADANIEMAX:10MIN:720wARIANT 20rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W KRUGE (1 BALL):zADA^A 1.∆u = 0, 0 ≤ r < 1, 0 < ϕ < 2π;u0r (1, ϕ) = 6 sin3 ϕ − cos3 ϕ + 4 sin ϕ.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W PRQMOUGOLX-zADA^A 2.NIKE (1 BALL):∆u = 0, 0 < x < l, 0 < y < y0 ; 0 y(2y0 − y)ux x=0 = 0, u0x x=l =, 0 ≤ y ≤ y0 ;64y031πx0 ucos , 0 ≤ x ≤ l.=1,uy y=y0 =y=0llzADA^A 3.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W KRUGOWOMCILINDRE (3 BALLa):∆u = 0, 0 ≤ r < R, 0 ≤ ϕ ≤ 2π, 0 < z < l; ur r=R = 0, 0 ≤ ϕ ≤ 2π, 0 ≤ z ≤ l;r2 u z=0 = v0 2 sin 2ϕ, uz z=l = 0, 0 ≤ r ≤ R, 0 ≤ ϕ ≤ 2π.RrE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ gELXMGOLXCA W KRUGEzADA^A 4.(2 BALLA):zADA^A 5.(3 BALLA):∆u + u = 0, 0 ≤ r < 2,u(2, ϕ) = cos2 ϕ + 4 sin ϕ.0 ≤ ϕ < 2π;rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ gELXMGOLXCA W [ARE∆u + 4u = 0, 0 ≤ r < 1, 0 ≤ ϕ < 2π,u0r (1, ϕ, ϑ) = cos ϑ − 2 sin ϑ.0 ≤ ϑ ≤ π;rl1, rl2, urmf I pf, MODULX II, TIPOWOE DOMA[NEE ZADANIEMAX:10MIN:721wARIANT 21rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W KRUGE (1 BALL):zADA^A 1.∆u = 0, 0 ≤ r < 3, 0 < ϕ < 2π;u(3, ϕ) = cos3 ϕ + sin3 ϕ + sin2 ϕ.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W PRQMOUGOLX-zADA^A 2.NIKE (1 BALL):∆u = 0, 0 < x < l, 0 < y < y0 ;y(2y0 − y) u x=0 = 0, ux=l =, 0 ≤ y ≤ y0 ;32y022πx22πx0 u=−sin,u=sin, 0 ≤ x ≤ l.y y=y0y=0lllzADA^A 3.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W KRUGOWOMCILINDRE (3 BALLa):∆u = 0, 0 ≤ r < R, 0 ≤ ϕ ≤ 2π, 0 < z < l; u r=R = 0, 0 ≤ ϕ ≤ 2π, 0 ≤ z ≤ l;r2 uz = 0, 0 ≤ r ≤ R, 0 ≤ ϕ ≤ 2π.=vcos2ϕ,u0z=0z=lR3rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ gELXMGOLXCA W KRUGEzADA^A 4.(2 BALLA):zADA^A 5.(3 BALLA):∆u + 9u = 0, 0 ≤ r < 1,u0r (1, ϕ) = cos3 ϕ + sin3 ϕ.0 ≤ ϕ < 2π;rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ gELXMGOLXCA W [ARE∆u + 4u = 0, 0 ≤ r < 2,u(2, ϕ, ϑ) = cos ϑ − sin2 ϑ.0 ≤ ϕ < 2π,0 ≤ ϑ ≤ π;rl1, rl2, urmf I pf, MODULX II, TIPOWOE DOMA[NEE ZADANIEMAX:10MIN:722wARIANT 22zADA^A 1.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W KRUGE (1 BALL):zADA^A 2.NIKE (1 BALL):∆u = 0, 0 ≤ r < 4, 0 < ϕ < 2π;u0r (4, ϕ) = 4 sin3 ϕ − sin ϕ − cos ϕ.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W PRQMOUGOLX-∆u = 0, 0 < x < l, 0 < y < y0 ;1πyπy u x=0 = − cos, u0x x=l =cos, 0 ≤ y ≤ y0 ;2y02y02y0x(2l − x) u0 ==0,u, 0 ≤ x ≤ l.y y=0y=y032l2zADA^A 3.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W KRUGOWOMCILINDRE (3 BALLa):∆u = 0, 0 ≤ r < R, 0 ≤ ϕ ≤ 2π, 0 < z < l; u r=R = 0, 0 ≤ ϕ ≤ 2π, 0 ≤ z ≤ l;r2 uz =vsin2ϕ,u0 ≤ r ≤ R, 0 ≤ ϕ ≤ 2π.0 3z z=l = 0,z=0RzADA^A 4.(2 BALLA):rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ gELXMGOLXCA W KRUGEzADA^A 5.(3 BALLA):∆u + 4u = 0, 0 ≤ r < 2, 0 ≤ ϕ < 2π;u0r (2, ϕ) = cos3 ϕ + 12 sin3 ϕ.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ gELXMGOLXCA W [ARE∆u + u = 0, 0 ≤ r < 1, 0 ≤ ϕ < 2π,u(1, ϕ, ϑ) = cos ϑ + 4 sin2 ϑ.0 ≤ ϑ ≤ π;rl1, rl2, urmf I pf, MODULX II, TIPOWOE DOMA[NEE ZADANIEMAX:10MIN:723wARIANT 23rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W KRUGE (1 BALL):zADA^A 1.∆u = 0, 0 ≤ r < 5, 0 < ϕ < 2π;u(5, ϕ) = − cos3 ϕ − sin3 ϕ + cos ϕ.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W PRQMOUGOLX-zADA^A 2.NIKE (1 BALL):∆u = 0, 0 < x < l, 0 < y < y0 ;22πy 0 ux x=0 = − cos, ux=l = 1, 0 ≤ y ≤ y0 ;y0y0l−x0 u0y , 0 ≤ x ≤ l.=0,u=y y=y0y=016l2zADA^A 3.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W KRUGOWOMCILINDRE (3 BALLa):∆u = 0, 0 ≤ r < R, 0 ≤ ϕ ≤ 2π, 0 < z < l; ur r=R = 0, 0 ≤ ϕ ≤ 2π, 0 ≤ z ≤ l;r2 uz = 0, 0 ≤ r ≤ R, 0 ≤ ϕ ≤ 2π.=vcos2ϕ,u0 3z=0z=lRrE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ gELXMGOLXCA W KRUGEzADA^A 4.(2 BALLA):zADA^A 5.(3 BALLA):∆u + u = 0, 0 ≤ r < 3, 0 ≤ ϕ < 2π;u0r (3, ϕ) = cos3 ϕ − sin3 ϕ.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ gELXMGOLXCA W [ARE∆u + 4u = 0, 0 ≤ r < 1, 0 ≤ ϕ < 2π,u0r (1, ϕ, ϑ) = cos ϑ + 2 sin ϑ.0 ≤ ϑ ≤ π;rl1, rl2, urmf I pf, MODULX II, TIPOWOE DOMA[NEE ZADANIEMAX:10MIN:724wARIANT 24zADA^A 1.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W KRUGE (1 BALL):zADA^A 2.NIKE (1 BALL):∆u = 0, 0 ≤ r < 2, 0 < ϕ < 2π;u0r (2, ϕ) = 4 cos3 ϕ + 2 sin3 ϕ + sin ϕ − cos ϕ.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W PRQMOUGOLX-∆u = 0, 0 < x < l, 0 < y < y0 ;3πyπy u x=0 = − cos, ux=l = cos, 0 ≤ y ≤ y0 ;2y2y00l−x u0 =0,u=, 0 ≤ x ≤ l.y y=0y=y02lzADA^A 3.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W KRUGOWOMCILINDRE (3 BALLa):∆u = 0, 0 ≤ r < R, 0 ≤ ϕ ≤ 2π, 0 < z < l; u r=R = 0, 0 ≤ ϕ ≤ 2π, 0 ≤ z ≤ l;r2 uz z=0 = v0 3 sin 2ϕ, uz z=l = 0, 0 ≤ r ≤ R, 0 ≤ ϕ ≤ 2π.RzADA^A 4.(2 BALLA):rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ gELXMGOLXCA W KRUGEzADA^A 5.(3 BALLA):∆u + u = 0, 0 ≤ r < 2, 0 ≤ ϕ < 2π;u(2, ϕ) = cos2 ϕ − 3 sin2 ϕ.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ gELXMGOLXCA W [ARE∆u + u = 0, 0 ≤ r < 1, 0 ≤ ϕ < 2π,u0r (1, ϕ, ϑ) = cos ϑ + 12 sin ϑ.0 ≤ ϑ ≤ π;rl1, rl2, urmf I pf, MODULX II, TIPOWOE DOMA[NEE ZADANIEMAX:10MIN:725wARIANT 25zADA^A 1.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W KRUGE (1 BALL):zADA^A 2.NIKE (1 BALL):∆u = 0, 0 ≤ r < 1, 0 < ϕ < 2π;u0r (1, ϕ) = 2 cos3 ϕ − sin3 ϕ + 3 sin ϕ − 3 cos ϕ.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W PRQMOUGOLX-∆u = 0, 0 < x < l, 0 < y < y0 ;3πy1πy3 0 ux x=0 = − sin, u0x x=l = sin , 0 ≤ y ≤ y0 ;y0y0y0y0x(x − 2l) u=0,u=, 0 ≤ x ≤ l.y=0y=y04l2zADA^A 3.rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ lAPLASA W KRUGOWOMCILINDRE (3 BALLa):∆u = 0, 0 ≤ r < R, 0 ≤ ϕ ≤ 2π, 0 < z < l; u r=R = 0, 0 ≤ ϕ ≤ 2π, 0 ≤ z ≤ l;r2 u z=0 = υ0 2 sin 2ϕ, uz=l = 0, 0 ≤ r ≤ R, 0 ≤ ϕ ≤ 2π.RzADA^A 4.(2 BALLA):rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ gELXMGOLXCA W KRUGEzADA^A 5.(3 BALLA):∆u + 16u = 0, 0 ≤ r < 2,u(2, ϕ) = cos2 ϕ + 5 sin ϕ.0 ≤ ϕ < 2π;rE[ITX KRAEWU@ ZADA^U DLQ URAWNENIQ gELXMGOLXCA W [ARE∆u + u = 0, 0 ≤ r < 1, 0 ≤ ϕ < 2π,u(1, ϕ, ϑ) = cos ϑ − 2 sin ϑ.0 ≤ ϑ ≤ π;.
Характеристики
Тип файла PDF
PDF-формат наиболее широко используется для просмотра любого типа файлов на любом устройстве. В него можно сохранить документ, таблицы, презентацию, текст, чертежи, вычисления, графики и всё остальное, что можно показать на экране любого устройства. Именно его лучше всего использовать для печати.
Например, если Вам нужно распечатать чертёж из автокада, Вы сохраните чертёж на флешку, но будет ли автокад в пункте печати? А если будет, то нужная версия с нужными библиотеками? Именно для этого и нужен формат PDF - в нём точно будет показано верно вне зависимости от того, в какой программе создали PDF-файл и есть ли нужная программа для его просмотра.















