ref-17947 (Криптология: подстановочно-перестановочный шифр и его применение), страница 3

2016-07-31СтудИзба

Описание файла

Документ из архива "Криптология: подстановочно-перестановочный шифр и его применение", который расположен в категории "". Всё это находится в предмете "информатика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "ref-17947"

Текст 3 страницы из документа "ref-17947"

В Англии XVII века возглавлял криптографическую службу математик Джон Валлис, основавший исчисление бесконечно малых, но получивший научное признание и профессуру в Оксфорде не за химерические бесконечно малые, а за редкостные успехи в расшифровке. В Германии же лучшим криптографом тогда был Лейбниц, основатель Берлинской академии наук, языковед и математик, один из создателей дифференциального исчисления, к имени которого мы еще вернемся позже в связи с развитием криптографии в России. Одно время его высокий покровитель, ганноверский курфюрст Георг1, став королем Англии, хотел пригласить Лейбница на британскую криптографическую службу, но Валлис был там незаменим и утечка континентальных "мозгов" на запад не состоялась. Лейбницу не подфартило стать главным криптографом Англии может быть и потому, что Ньютон, оспаривающий его авторство в дифференциальном исчислении, единолично заправлял в Королевском научном обществе и изо всех сил преследовал менее именитого иностранного конкурента. Другой раз Лейбницу не повезло с приглашением в Петербург для организации русской криптографической службы. Неожиданная его болезнь и смерть расстроили планы Петра 1, активно вербовавшего нужных России ученых. Человеком, сумевшим завершить развитие криптографии в отдельную научную дисциплину, стал, по-видимому, однофамилец Роджера Бэкона - Френсис Бэкон. Будучи лорд-канцлером, при короле Якове 1, он хорошо знал потребности государства в надежных шифрах, и его первая талантливая работа, относящаяся к 1580 году, в дальнейшем получила блестящее практическое развитие. В частности, именно он впервые предложил двоичное кодирование букв латинского алфавита - то же самое, которое используется сейчас в компьютерах.

Такой заботливый уход за пустившей первые ростки криптографией привел к тому, что она скоро стала давать плоды. Разгром Великой Армады в 1588 году в значительной степени был обусловлен мощью английской криптографической школы, легко ломавшей испанские шифры и сообщавшей о всех передвижениях неприятельских судов. Криптография была известна и применялась во многих слоях общества Британии. Лондонец Самуэль Пепис (1633-1703) всемирно известен своим дневником, по которому историки пишут труды о переходе от Пуританства к Реставрации. Искусствоведы включили это произведение в мировую сокровищницу литературы. Пепис окончил Кембридж благодаря кузену отца - адмиралу Монтегю и имел много друзей: ученого Исаака Ньютона, архитектора Кристофера Рена, поэта и драматурга Джона Драйдена. Пепис был лично свидетелем таких незабываемых для Англии событий, как возвращение короля Чарльза II в Англию, большая чума 1664 года, пожар Лондона 1666 года, революция 1688 года. Интересно, что его мемуары были зашифрованы по системе криптолога Томаса Шелтона и дополнительно собственным шифром Пеписа, поскольку содержали много скандальных фактов о великих современниках. Вместе с его личными книгами и бумагами дневник после смерти писателя попал в Кембридж, где сразу же привлек внимание исследователей. Первый успех в его расшифровке был получен лишь в 1822 году, а полностью она завершена в 1899 году. Таким образом, к XVIII веку криптография окончательно сложилась в виде самостоятельной науки. Однако, несмотря на наличие профессиональных криптологов, находящихся на государственной службе, и постоянного использования шифров в дипломатии и военном деле, криптология еще не вышла из младенческого возраста и ею могли заниматься лишь избранные, одаренные одиночки.





Криптология в Новое время

Новое время привнесло новые достижения в криптографию. Постоянно расширяющееся применение шифров выдвинуло новое требование к ним - легкость массового использования, а старое требование - устойчивость к взлому не только осталось, но и было усилено. Поэтому 1854 год, когда англичанин Чарльз Уитстон разработал новую шифровку биграммами, которую называют двойной квадрат, открыл новый этап в криптографии. Название шифр получил по аналогии с полибианским квадратом. В отличие от полибиаиского, двойной квадрат использует сразу две таблицы, расположенные по горизонтали, а шифрование идет биграммами, как в шифре Playfair. Эти, казалось бы и не столь уж значительные изменения привели к появлению на свет новой криптографической системы ручного шифрования. Она оказалась так надежна и удобна, что применялась немцами даже в годы Второй мировой войны. По отзыву ее создателя, шифрование двойным квадратом предельно просто и его "можно доверить даже дипломатам". Приведем пример использования шифра двойной квадрат для русских текстов. Имеются две таблицы со случайно расположенными в них алфавитами:





Ч В Ы П

О К : Д У

Г Ш 3 Э Ф

Л Ъ Х А ,

Ю Р Ж Щ Н

Ц Б И Т Ь

. С Я М Е

Е Л Ц : П

. Х Ъ А Н

Ш Д Э К С

Ы Б Ф У

Я Т И Ч Г

М О , Ж Ь

В Щ 3 Ю Р



Для шифрования сообщение разбивают на биграммы. Первая буква биграммы находится в левой таблице, а вторая в правой. Затем, мысленно в таблице строится прямоугольник так, чтобы буквы биграммы лежали в его противоположных вершинах. Другие две вершины этого прямоугольника дают буквы шифровки. Предположим, что шифруется биграмма текста ОЖ. Буква О находится в колонке 1 строки 2 левой таблицы. Буква Ж находится в колонке 4 строки 6 правой таблицы. Значит, прямоугольник образован строками 2 и 6, а также колонками 1 левой и 4 правой таблиц. Следовательно, шифровке соответствуют буквы, лежащие в колонке 1 строки 6 левой таблицы Ц и в колонке 4 строки 2 правой таблицы А - биграмма АЦ. Так парами букв шифруется все сообщение:

Сообщение: ПР ИЕ ЗЖ АЮ Ш ЕС ТО ГО

Шифровка : ПЕ МБ КИ ФМ ЕШ РФ ЖБ ДЦ ЩП

Если обе буквы биграммы сообщения лежат в одной строке, то и буквы шифровки берутся из этой же строки. Первая буква биграммы шифровки берется из левой таблицы в столбце, соответствующем второй букве биграммы сообщения. Вторая же буква биграммы шифровки берется из правой таблицы в столбце, соответствующем первой букве биграммы сообщения. Так, по приведенным выше таблицам биграмма сообщения ТО превращается в биграмму шифровки ЖБ. Несомненно, что шифрование биграммами дает весьма устойчивый к вскрытию и простой шифр, а это было в то время крупным успехом. Взлом шифровки двойного квадрата требует больших усилий и длины сообщения более тридцати строк.

Во второй половине XIX века появляется множество работ по вскрытию сложных шифров замены для конкретных условий, при использовании повторяющегося короткого ключа, при шифровке нескольких сообщений одним ключом. Тогда же в Англии и США стали выходить периодические издания, посвященные вопросам криптоанализа, где профессионалы и любители, обмениваясь опытом, предлагали новые типы шифров и анализировали их стойкость к взлому. Возможно, одного из самых больших успехов XX века криптоаналитика добилась, когда Британская морская разведка в начале 1917 года передала правительству США текст секретной расшифрованной телеграммы (телеграмма была перехвачена с трансатлантического кабеля.) , известной как послание Циммермана, бывшего министром иностранных дел Германии. В ней немецкому послу в Мексике предлагалось заключить союз, чтобы Мексика захватила американские штаты Техас, Нью-Мехико и Аризону. Эта телеграмма, произвела эффект взрыва и, считают сейчас историки, стала главным поводом для вступления США в Первую мировую войну против Германии, обеспечив ее разгром. Так криптография впервые серьезно заявила о своей исключительно большой значимости в современном мире.

XIX век с расширением связных коммуникаций занялся автоматизацией процесса шифрования. Появился телеграф, нужно шифровать и его. Любопытно, что цифровое шифрующее колесо было изобретено госсекретарем Томасом Джефферсоном в 1790 году, ставшим потом третьим президентом США. Похожие шифрующие устройства применялись армией США и после Второй мировой войны. Принцип работы таких машин, очень похожих на арифмометры, заключается в многоалфавитной замене текста сообщения по длинному ключу. Длина периода ключа определялась наименьшим общим кратным периодов оборотов шифрующих колес. При 4 колесах и периодах их оборотов 13, 15, 17 и 19 получалась большая длина периода ключа 62985, очень затрудняющая расшифровку коротких сообщений. Гораздо более примитивный прибор, цилиндр Базери, был предложен Этьеном Базери в 1891 году. Он состоял из 20 дисков со случайно нанесенным по ободу алфавитом. Перед началом шифрования диски помешались на общую ось в порядке, определяемым ключом. Набрав первые 20 букв текста в ряд на цилиндрах их поворачивали вместе и считывали в другом ряду шифрованное сообщение. Процесс повторялся, пока все сообщение не было зашифровано. Однако первая практически используемая криптографическая машина была предложена Жильбером Вернамом лишь в 1917 году. Применение машин в криптографии расширялось, что привело к созданию частных фирм, занимающихся их серийным выпуском. Шифровальная аппаратура создавалась в Германии, Японии, США и ряде других развитых стран. Предшественницей современных криптографических машин была роторная машина, изобретенная Эдвардом Хеберном в 1917 году и названная впоследствии Энигмой (Слово enigma переводится как загадка, Промышленные образцы этой машины изготовляла фирма Siemens.). Независимая промышленная ее версия создана чуть позже берлинским инженером Артуром Кирхом (некоторые источники называют его Артуром Шербиусом). Она сначала Представляла собой 4 вращающихся на одной оси барабана, обеспечивающих более миллиона вариантов шифра простой замены, определяемого текущим положением барабанов. На каждой стороне барабана по окружности располагалось 25 электрических контактов, столько же, сколько букв в алфавите. Контакты с обеих сторон барабана соединялись попарно случайным образом 25 проводами, формировавшими замену символов. Колеса складывались вместе и их контакты, касаясь друг друга, обеспечивали прохождение электрических импульсов сквозь весь пакет колес. Перед началом работы барабаны поворачивались так, чтобы устанавливалось заданное кодовое слово - ключ, а при нажатии клавиши и кодировании очередного символа правый барабан поворачивался на один шаг. После того, как он делал оборот, на один шаг поворачивался следующий барабан - будто бы в счетчике электроэнергии. Таким образом, получался ключ заведомо гораздо более длинный, чем текст сообщения.

Например, в первом правом барабане провод от контакта, соответствующего букве U, присоединен к контакту буквы F на другой его стороне. Если же барабан поворачивался на один шаг, то этот же провод соответствовал замене следующей за U буквы V на следующую за F букву G. Так как барабаны соприкасались контактами, то электрический импульс от нажатой клавиши с буквой исходного текста, прежде чем достигал выхода претерпевал 4 замены: по одной в каждом барабане. Для затруднения расшифрования барабаны день ото дня переставлялись местами или менялись. Дальнейшее усовершенствование этой машины сделало движение барабанов хаотичным, а число их увеличилось сначала до 5, а потом до 6. Все устройство могло поместиться в портфеле и было так просто, что обслуживалось обычными связистами.

Казалось бы, сделано все для невозможности вскрытия шифровок Энигмы. И все же английские криптографические службы в Блетчли Парке (уединенное поместье в 80 километрах севернее Лондона, отведенное британским криптологам.) почти всю войну читали немецкие шифры. Это стало возможным лишь благодаря польской разведке, которая к злополучному 1939 году смогла получить чертежи Энигмы и разобраться в ее устройстве. После нападения гитлеровцев на Польшу чертежи немецкой шифровальной машины были переданы Англии. Довольно быстро британские криптоаналитики установили, что для взлома шифра, нужно знать распайку проводов в шифрующих колесах. Началась охота британских спецслужб за образцами Энигмы. Первый удалось выкрасть прямо с завода на юго-востоке Германии, второй сняли со сбитого в небе Норвегии немецкого бомбардировщика, третий был найден во время боев за Францию у немецких военных связистов, взятых в плен. Остальные Энигмы сняты водолазами с немецких подводных лодок, за которыми специально стали охотиться и топить на малых глубинах. Взлом шифров Энигмы шел тяжело до тех пор, пока в 1942 году не вступили в строй несколько ЭВМ, специально созданных для этого Аланом Тьюрингом. Это была первая в мире довольно быстродействующая ЭВМ под названием "Колосс", специализированная для взлома шифров. После этого английские криптоаналитики могли меньше чем за день могли расколоть любую шифровку Энигмы, полученную добытыми ранее колесами, методично перебирая все возможные ключи. Немцы рассчитывали на сложность своего шифра, исходя из его ручной дешифровки, в то время как англичане стали его ломать, используя ЭВМ. Отметим, что сами немцы допускали возможность взлома шифра Энигмы. Еще в 1930 году ведущий немецкий криптоаналитик Георг Шредер продемонстрировал такую возможность, едко заметив при этом: "Энигма - дерьмо!" Однако она постоянно усложнялась и были периоды, когда в Блетчли Парке с ней не могли справиться. Перед шифровками Энигмы, которые исходили не от войск, а из немецких криптографических центров, "Колосс" тоже был бессилен.

Высокое развитие криптографической техники стран западных союзников в значительной степени предопределило ход многих боевых операций во время Второй мировой войны. Англия, хоть и несла на море большие потери, но практически подавляла любые организованные действия немецкого флота, перехватывая и читая приказы гроссадмиралов Редера и Деница. В книгах воспоминаний английских криптографов страницы сплошь усеяны фразами "...мы знали...", за которыми стоит колоссальный труд тысяч человек.

Шифр Цезаря

Гай Юлий Цезарь, римский император, в то же время, известен как изобретатель (не могу сказать "разработчик") своего шифра, поручавшего Марку Туллию Цицерону и своим близким шифровать послания и использовать 50-буквенный алфавит.

Цитирую Гая Светония: "Существуют и его письма к Цицерону и письма к близким о домашних делах: в них, если нужно было сообщить что-нибудь негласно, он пользовался тайнописью, то есть менял буквы так, чтобы из них не складывалось ни одного слова. Чтобы разобрать и прочитать их, нужно читать всякий раз четвертую букву вместо первой, например, D вместо А и так далее".

Выражаясь современной терминологией, номер каждого символа при шифровании увеличивался на 3: А на D, B на E и т.д. Знаменитая фраза Цезаря VENI VIDI VICI (пришел, увидел, победил), посланная сенату после однодневной войны с Фарнаком, царем Понта, после зашифровки превратилось бы в SBKF SFAF SFZF. Для уточнения стоит отметить, что Гай Светоний ошибался, давая этому методу название тайнописи. Тайнопись - это сокрытие самого факта передачи сообщения, изложенное Светонием называется, в современной терминологии, шифром однозначной замены.

Криптоалгоритм будет реализован на ASCII-таблице. Для корректной реализации шифра еще потребуется нормализация, проводимая для того, чтобы множества совпадали и, естественно, размеры множеств открытого и шифротекста были равны (т.н. гомоморфизм). Для этого делается следующее: если сумма текущего номера и тройки выходит за пределы алфавита (размера множества разрешенных символов), то отсчет букв начинается сначала.

Программный код для шифрования текстовых сообщений по принципу «шифра Цезаря» на языке программирования Visual Basic

Пусть kk = 3 и кодируемой фразой будет «i remember that September ». Будем использовать латинские буквы со стандартным следованием букв в алфавите. Результаты шифрования указанной выше фразы показаны ниже в таблице:

 

1

i

 

r

e

m

e

m

b

e

r

 

t

h

a

t

 

s

e

p

t

e

m

b

e

r

2

9

0

18

5

13

5

13

2

5

18

0

20

8

1

20

0

19

5

16

20

5

13

2

5

18

3

12

3

21

8

16

8

16

5

8

21

3

23

11

4

23

3

22

8

19

23

8

16

5

8

21

4

l

c

u

h

p

h

p

e

h

u

c

w

k

d

w

c

v

h

s

w

h

p

e

h

u

 

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5137
Авторов
на СтудИзбе
440
Средний доход
с одного платного файла
Обучение Подробнее