41544 (Why the crystal structure of the element is such lattice but not another?)

2016-07-31СтудИзба

Описание файла

Документ из архива "Why the crystal structure of the element is such lattice but not another?", который расположен в категории "". Всё это находится в предмете "иностранный язык" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "иностранный язык" в общих файлах.

Онлайн просмотр документа "41544"

Текст из документа "41544"

Why the crystal structure of the element is such lattice but not another?

Реферат Геннадия Филипенко

Гродно

1996

“Why the crystal structure of the element is such lattice but not another?How much electrons are placed in zone conductivity from one the atom of lattice?”

Abstract

The literature generally describes a metallic bond as the one formed by means of mutual bonds between atoms' exterior electrons and not possessing the directional properties. However, attempts have been made to explain directional metallic bonds, as a specific crystal metallic lattice.Why the crystal structure of the element is such lattice but not another?How much electrons are placed in zone conductivity from one the atom of lattice?

This paper demonstrates that the metallic bond in the densest packings (volume-centered and face-centered) between the centrally selected atom and its neighbours in general is, probably, effected by 9 (nine) directional bonds, as opposed to the number of neighbours which equals 12 (twelve) (coordination number).

Probably, 3 (three) "foreign" atoms are present in the coordination number 12 stereometrically, and not for the reason of bond. This problem is to be solved experimentally.

Introduction

At present, it is impossible, as a general case, to derive by means of quantum-mechanical calculations the crystalline structure of metal in relation to electronic structure of the atom. However, Hanzhorn and Dellinger indicated a possible relation between the presence of a cubical volume-centered lattice in subgroups of titanium, vanadium, chrome and availability in these metals of valent d-orbitals. It is easy to notice that the four hybrid orbitals are directed along the four physical diagonals of the cube and are well adjusted to binding each atom to its eight neighbours in the cubical volume-centered lattice, the remaining orbitals being directed towards the edge centers of the element cell and, possibly, participating in binding the atom to its six second neighbours /3/p. 99.

Let us try to consider relations between exterior electrons of the atom of a given element and structure of its crystal lattice, accounting for the necessity of directional bonds (chemistry) and availability of combined electrons (physics) responsible for galvanic and magnetic properties.

According to /1/p. 20, the number of Z-electrons in the conductivitiy zone has been obtained by the authors, allegedly, on the basis of metal's valency towards oxygen, hydrogen and is to be subject to doubt, as the experimental data of Hall and the uniform compression modulus are close to the theoretical values only for alkaline metals. The volume-centered lattice, Z=1 casts no doubt. The coordination number equals 8.

The exterior electrons of the final shell or subcoats in metal atoms form conductivity zone. The number of electrons in the conductivity zone effects Hall's constant, uniform compression ratio, etc.

Let us construct the model of metal - element so that external electrons of last layer or sublayers of atomic kernel, left after filling the conduction band, influenced somehow pattern of crystalline structure (for example: for the body-centred lattice - 8 ‘valency’ electrons, and for volume-centered and face-centred lattices - 12 or 9).

ROUGH, QUALITATIVE MEASUREMENT OF NUMBER OF ELECTRONS IN CONDUCTION BAND OF METAL - ELEMENT. EXPLANATION OF FACTORS, INFLUENCING FORMATION OF TYPE OF MONOCRYSTAL MATRIX AND SIGN OF HALL CONSTANT.

(Algorithm of construction of model)

The measurements of the Hall field allow us to determine the sign of charge carriers in the conduction band. One of the remarkable features of the Hall effect is, however, that in some metals the Hall coefficient is positive, and thus carriers in them should, probably, have the charge, opposite to the electron charge /1/. At room temperature this holds true for the following: vanadium, chromium, manganese, iron, cobalt, zinc, circonium, niobium, molybdenum, ruthenium, rhodium, cadmium, cerium, praseodymium, neodymium, ytterbium, hafnium, tantalum, wolfram, rhenium, iridium, thallium, plumbum /2/. Solution to this enigma must be given by complete quantum - mechanical theory of solid body.

Roughly speaking, using the base cases of Born- Karman, let us consider a highly simplified case of one-dimensional conduction band. The first variant: a thin closed tube is completely filled with electrons but one. The diameter of the electron roughly equals the diameter of the tube. With such filling of the area at local movement of the electron an opposite movement of the ‘site’ of the electron, absent in the tube, is observed, i.e. movement of non-negative sighting. The second variant: there is one electron in the tube - movement of only one charge is possible - that of the electron with a negative charge. These two opposite variants show, that the sighting of carriers, determined according to the Hall coefficient, to some extent, must depend on the filling of the conduction band with electrons. Figure 1.


+q


-q


а) б)

Figure 1. Schematic representation of the conduction band of two different metals. (scale is not observed).

a) - the first variant;

b) - the second variant.

The order of electron movement will also be affected by the structure of the conductivity zone, as well as by the temperature, admixtures and defects. Magnetic quasi-particles, magnons, will have an impact on magnetic materials.

Since our reasoning is rough, we will further take into account only filling with electrons of the conductivity zone. Let us fill the conductivity zone with electrons in such a way that the external electrons of the atomic kernel affect the formation of a crystal lattice. Let us assume that after filling the conductivity zone, the number of the external electrons on the last shell of the atomic kernel is equal to the number of the neighbouring atoms (the coordination number) (5).

The coordination number for the volume-centered and face-centered densest packings are 12 and 18, whereas those for the body-centered lattice are 8 and 14 (3).

The below table is filled in compliance with the above judgements.

Element

RH . 1010

(cubic metres /K)

Z

(number)

Z kernel

(number)

Lattice type

Natrium

Na

-2,30

1

8

body-centered

Magnesium

Mg

-0,90

1

9

volume-centered

Aluminium Or

Al

-0,38

2

9

face-centered

Aluminium

Al

-0,38

1

12

face-centered

Potassium

K

-4,20

1

8

body-centered

Calcium

Ca

-1,78

1

9

face-centered

Calciom

Ca

T=737K

2

8

body-centered

Scandium Or

Sc

-0,67

2

9

volume-centered

Scandium

Sc

-0,67

1

18

volume-centered

Titanium

Ti

-2,40

1

9

volume-centered

Titanium

Ti

-2,40

3

9

volume-centered

Titanium

Ti

T=1158K

4

8

body-centered

Vanadium

V

+0,76

5

8

body-centered

Chromium

Cr

+3,63

6

8

body-centered

Iron or

Fe

+8,00

8

8

body-centered

Iron

Fe

+8,00

2

14

body-centered

Iron or

Fe

Т=1189K

7

9

face-centered

Iron

Fe

Т=1189K

4

12

face-centered

Cobalt or

Co

+3,60

8

9

volume-centered

Cobalt

Co

+3,60

5

12

volume-centered

Nickel

Ni

-0,60

1

9

face-centered

Copper or

Cu

-0,52

1

18

face-centered

Copper

Cu

-0,52

2

9

face-centered

Zink or

Zn

+0,90

2

18

volume-centered

Zink

Zn

+0,90

3

9

volume-centered

Rubidium

Rb

-5,90

1

8

body-centered

Itrium

Y

-1,25

2

9

volume-centered

Zirconium or

Zr

+0,21

3

9

volume-centered

Zirconium

Zr

Т=1135К

4

8

body-centered

Niobium

Nb

+0,72

5

8

body-centered

Molybde-num

Mo

+1,91

6

8

body-centered

Ruthenium

Ru

+22

7

9

volume-centered

Rhodium Or

Rh

+0,48

5

12

face-centered

Rhodium

Rh

+0,48

8

9

face-centered

Palladium

Pd

-6,80

1

9

face-centered

Silver or

Ag

-0,90

1

18

face-centered

Silver

Ag

-0,90

2

9

face-centered

Cadmium or

Cd

+0,67

2

18

volume-centered

Cadmium

Cd

+0,67

3

9

volume-centered

Caesium

Cs

-7,80

1

8

body-centered

Lanthanum

La

-0,80

2

9

volume-centered

Cerium or

Ce

+1,92

3

9

face-centered

Cerium

Ce

+1,92

1

9

face-centered

Praseodymium or

Pr

+0,71

4

9

volume-centered

Praseodymium

Pr

+0,71

1

9

volume-centered

Neodymium or

Nd

+0,97

5

9

volume-centered

Neodymium

Nd

+0,97

1

9

volume-centered

Gadolinium or

Gd

-0,95

2

9

volume-centered

Gadolinium

Gd

T=1533K

3

8

body-centered

Terbium or

Tb

-4,30

1

9

volume-centered

Terbium

Tb

Т=1560К

2

8

body-centered

Dysprosium

Dy

-2,70

1

9

volume-centered

Dysprosium

Dy

Т=1657К

2

8

body-centered

Erbium

Er

-0,341

1

9

volume-centered

Thulium

Tu

-1,80

1

9

volume-centered

Ytterbium or

Yb

+3,77

3

9

face-centered

Ytterbium

Yb

+3,77

1

9

face-centered

Lutecium

Lu

-0,535

2

9

volume-centered

Hafnium

Hf

+0,43

3

9

volume-centered

Hafnium

Hf

Т=2050К

4

8

body-centered

Tantalum

Ta

+0,98

5

8

body-centered

Wolfram

W

+0,856

6

8

body-centered

Rhenium

Re

+3,15

6

9

volume-centered

Osmium

Os

<0

4

12

volume centered

Iridium

Ir

+3,18

5

12

face-centered

Platinum

Pt

-0,194

1

9

face-centered

Gold or

Au

-0,69

1

18

face-centered

Gold

Au

-0,69

2

9

face-centered

Thallium or

Tl

+0,24

3

18

volume-centered

Thallium

Tl

+0,24

4

9

volume-centered

Lead

Pb

+0,09

4

18

face-centered

Lead

Pb

+0,09

5

9

face-centered

Where Rh is the Hall’s constant (Hall’s coefficient)

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5160
Авторов
на СтудИзбе
439
Средний доход
с одного платного файла
Обучение Подробнее