25445 (Магнитная обработка промышленных вод), страница 3

2016-07-31СтудИзба

Описание файла

Документ из архива "Магнитная обработка промышленных вод", который расположен в категории "". Всё это находится в предмете "геология" из 2 семестр, которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "геология" в общих файлах.

Онлайн просмотр документа "25445"

Текст 3 страницы из документа "25445"

Недавняя статья Lipus и соавторов [16] представляет развитие модели поверхностной нейтрализации как одного из возможных механизмов управления величиной масштаба MWT. Нейтрализация может происходить из-за смещений ионов из основной части раствора к поверхности частицы. Ионное смещение обусловленное силой Лоренца сбалансировано силой вязкости. Согласно [16], Лоренц смещение иона описывается:

где e – заряд электрона, z - ионная валентность, - вязкость воды, r - ионный радиус, B – индукция магнитного поля, - время нахождения в MWT устройстве и -скорость потока. Смещения, рассчитанные для B = 0,2 V/m и = 0,1с, равны 3,4 нм и 5,3 нм для Ca2+ и Mg2+ соответственно, в то время как для HCO-3 лишь 0,9 нм. Ионные смещения станут существенными в близи твердых поверхностей, где они могут конденсироваться в адсорбционном слое Штерна, известном как диффузный слой.

Авторы утверждают, что смещающиеся противоионы останутся адсорбированными в слое Штерна в течение длительного времени (даже в течение дней) в зависимости от степени нейтрализации. (Это было фактически обосновано методом AFM в [12], когда экспозиция в магнитном поле уплотняла (расширяла?) адсорбционный слой; это явление объяснялось как обусловленное адсорбцией гидратированных ионов.) Окончательный вывод был сделан о том, что противонакипный эффект возможно вызван ускоренной коагуляцией накипь-образующих частиц в течение и после MWT.

Мы думаем, что модели, цитируемые выше дают хорошее основание для нашего заключения относительно критической роли которую играет кремнезем. Хотя две цитируемые статьи обсуждают эффект сил Лоренца, действующих на любую коллоидную частицу, роль кремнезема так или иначе уникальна. Кремнезем присутствует в естественной воде в форме кремневых кислотных полимеров xSiO2.yH2O, которые могут легко эволюционировать в ионное или коллоидное состояние, и в форму коллоидных частиц (SiO2)м диаметра до 1 мкм. Содержание кремнезема в воде лежит в пределах от 1 мг/л (или меньше) до 10 мг/л (или больше). В стабильном коллоидном растворе частицы кремнезема нейтральны (не активны) и имеют мицеллярную форму [24] со структурной схемой:

Коллоидные частицы кремнезема имеют значительный отрицательный заряд [18,22-24] из-за наличия (SiO3)2- анионов, возникающих благодаря диссоциации ядер поверхности. Отрицательный заряд остается неизменяемым в широком диапазоне pH, и это характерное свойство, которое отличает частицы кремнезема от других, легко перезаряжающихся коллоидных частиц. Существующий диффузионный слой содержит H+ ионы и другие положительные ионы, присутствующие в растворе (например. Ca2+, Mg2 +, ...и т.д.). В диффузионном слое также присутствуют молекулы H2O. Они могут так или иначе ориентироваться [28].

Отрицательный заряд, (revealed обнаруживаемый?) действием силы Лоренца, должен облегчить адсорбцию положительно заряженных ионов или частиц. Смещение ионов, вызванное силой Лоренца из диффузионного слоя в слой Штерна будет наибольшим для Ca- и Mg-катионов, из-за их малого отношения r/z. Согласно [16], относительное смещение (связанное с длиной диффузионного слоя) оцененного для Ca2+ и Mg2+ ионов во внутренней водопроводной воде были бы 1,9 и 3 соответственно, в MWT устройстве B величина была в четыре раза меньше, чем у нашего устройства (см. Главу 2). Смещающиеся катионы остались бы адсорбированными на отрицательно заряженной поверхности коллоидной частицы в течение длительного времени [16]. Этот процесс вероятно достаточно силен, чтобы блокировать кристаллизацию Ca- и Mg- карбонатов. Таким образом, под магнитной активацией мы подразумеваем индуцированную полем модификацию диффузионного слоя, которая поддерживает адсорбцию катионов коллоидными частицами. Наши результаты показывают, что этот процесс особенно важен для коллоидного кремнезема.

Другое изменение, которое может в этом случае происходить, является увеличением вероятности коагуляции дисперсной системы. Мы знаем, что соль кремнезема и поверхность раздела воды и кремнезема представляют собой самые сложные системы [29], которые требуют для своего изучения больших предосторожностей. Несомненно, что дальнейшая экспериментальная работа желательна для количественного описания MWT противонакипного эффекта.

Наконец, позвольте нам сравнивать средние количества суспензии и отложений, извлеченных в нашем крупномасштабном эксперименте. Масса воды, текущей через каждый электрический контур была 2500 т. Среднее значение сухого остатка, остающегося после испарения 1 литра используемой воды было 0.35 г. Это дает больше чем 800 кг суспензии, которая перекачивалась каждым контуром в течение четырех месяцев. Содержание кремнезема в воде было 10 мг/л, в сумме это 25 кг кремнезема. Формирование углекислых отложений при умеренных температурах (до 300C) замедляло процесс, поскольку всего лишь 190 г кальцитовых отложений было извлечено из контура после четырех месяцев эксплуатации. Это означает, что для защиты от накипеобразования достаточно активизировать лишь малую часть кремнезема в воде.

В резюме мы представили результаты крупномасштабного эксперимента и индустриального применения магнитогидродинамической обработки воды. Благодаря значительной продолжительности и надлежащей реализации обработки обнаружился несомненный противонакипный эффект. Аморфный мягкий депозит, извлеченный из MWT был идентифицирован как обусловленный гидрозолем кремнезема. Оказалось, что кристаллизация кальцита была блокирована из-за сильной адсорбции кальция и других ионов металла на магнитным способом активизированном кремнеземе. В результате аморфные Ca-Mg гидрозоли кремнезема образовались в процессах адсорбции и коагуляции. Мы предполагаем, что коллоидный кремнезем был активизирован посредством силы Лоренца, индуцирующей конденсацию слоя Штерна, в расчете диффузионного слоя [16].

Чтобы предотвращать образование накипи в системе было необходимо активизировать только малую фракцию находящегося в воде кремнезема.

Мы хотели бы выразить нашу искреннюю благодарность команде «Energopomiar» химическому отделу в Gliwice, Польша за выполнение химических исследований и за плодотворное сотрудничество. Благодарим за помощь и доброе отношение директора и технического руководителя Laziska электростанции. Мы очень благодарны нашим коллегам, J. Sciesinski и A. Bajorek за измерения IR поглощения и рентгеновские исследования образцов. Благодарим за дополнительные измерения и обсуждения результатов с научными коллективами профессора М. Handke и профессора С. Hodorowicz.

Специальная благодарность профессору J.M.D. Coey за помощь при работе с текстом и обсуждения.

References

1. Th. Vermeiren, Corrosion Technol. 5, 215 (1958).

2. V.I. Klassen, Dokl. Akad. Nauk SU 166, 1383 (1966); Omagnicivanije vodnych sistem (in Russian) (Ed. Chimija, Moskva, 1978); in Developments in Mineral Processing (Elsevier, N.Y., 1981), Part B, Mineral Processing, p. 1077.

3. K.J. Kronenberg, IEEE Trans. Magn. 21, 2059 (1985).

4. E.F. Tebenihin, B.T. Gusev, Obrabotka vody magnitnym polem v teploenergetike (Ed. Energija, 1970).

5. N.N. Kruglitskij, G.A. Kataev, B.P. Zhantalay, K.A. Rubezhanskij, A.A. Kolomec, Kolloid. Zh. 47, 493 (1985).

6. S.A. Parsons, B.L. Wang, S. Udol, S.J. Judd, T. Stephenson, Trans. IChemE (part B) 74, 98 (1997).

7. I.J. Lin, J. Yotvat, J. Magn. Magn. Mater. 83, 525 (1990).

8. V.G. Levic, Uspekhi Fiz. Nauk 88, 787 (1966) (in Russian).

9. O.T. Krylov, I.K. Vikulova, V.V. Eletsky, N.A. Rozno, V.I. Klassen, Coll. J. USRR 47, 31 (1985).

10. K. Higashitani, K. Okuhara, S. Hatade, J. Colloid Interface Sci. 152, 125 (1992).

11. K. Higashitani, H. Iseri, K. Okuhara, A. Kage, S. Hatade, J. Colloid Interface Sci. 172, 383 (1995).

12. K. Higashitani, J. Oshitani, J. Colloid Interface Sci. 204, 363 (1998).

13. J. Oshitani, R. Uehara, K. Higshitani, J. Colloid Interface Sci. 209, 374 (1999).

14. Anti-scale Magnetic Treatment and Physical Conditioning, Proc. MAG 3 (Ed. S. Parsons, Cran_eld University, 1999), ISBN - 1 86194 010 6.

15. J.M.D. Coey, S. Cass, J. Magn. Magn. Mater. 209, 71 (2000).

16. L.C. Lipus, J. Krope, L. Crepinsek, J. Colloid Interface Sci. 236, 60 (2001).

17. V.C. Farmer, The Infrared Spectra of Minerals (Mineralogical Society Monograph 4, London, 1974).

18. W. Eitel, The Physical Chemistry of the Silicates (The University of Chicago Press, 1954).

19. A. Szkatul/a et al., Magnetohydrodynamic method of water treatment, European Patent No. 0241 090 B1, Cl. C02F 1/48.

20. A. Szkatul/a et al., in preparation.

21. M. Kitamura, J. Colloid Interface Sci. 236, 318 (2001).

22. M. Colic, D. Morse, Langumir 14, 783 (1998).

23. R.K. Iler, The Chemistry of Silica (Wiley, New York, 1979).

24. L.A. Kulskii, Theoretical Bases and Technology of Water Conditioning (Ed. Naukova Dumka, Kiev, 1980) (in Russian).

25. M. Smoluchowski, Phys. Zeit. XVII, 557{571; 587{599 (1916).

26. N.I. Gamayunov, Kolloid. Zh. 56, 290 (1994); English Translation: Colloid. J. 56, 234 (1994).

27. R.J. Hunter, Introduction to Modern Colloidal Science (Oxford Science Publications, New York, 1996).

28. Q. Du, E. Freysz, Y.R. Shen, Phys. Rev. Lett. 72, 238 (1994).

29. V.V. Yaminsky, B.W. Ninham, R.M. Pashley, Langumir 14, 3223 (1998).

Размещено на Allbest.ru

1 PIXE (Proton Induced X-ray Emission) индуцирование протонов под воздействием Рентгеновского излучения

2 AFM – atomic force microscope

3 kOe – kOersted = Oersted103 (79.58*103 А/м = 10-1 Тл)

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5184
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее